Chapter 15: Problem 60
The reaction of an organic acid with an alcohol, in organic solvent, to produce an ester and water is commonly done in the pharmaceutical industry. This reaction is catalyzed by strong acid (usually \(\mathrm{H}_{2} \mathrm{SO}_{4} ) .\) A simple example is the reaction of acetic acid with ethyl alcohol to produce ethyl acetate and water: $$\begin{aligned} \mathrm{CH}_{3} \mathrm{COOH}(s o l v)+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(s o l v) & \rightleftharpoons \\ \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{solv}) &+\mathrm{H}_{2} \mathrm{O}(\text {solv}) \end{aligned}$$ where \(^{a}(s o l v)^{\prime \prime}\) indicates that all reactants and products are in solution but not an aqueous solution. The equilibrium constant for this reaction at \(55^{\circ} \mathrm{C}\) is 6.68 . A pharmaceutical chemist makes up 15.0 \(\mathrm{L}\) of a solution that is initially 0.275 \(\mathrm{M}\) in acetic acid and 3.85\(M\) in ethanol. At equilibrium, how many grams of ethyl acetate are formed?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.