Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is a catalyst? (b) What is the difference between a homogeneous and a heterogeneous catalyst? (c) Do catalysts affect the overall enthalpy change for a reaction, the activation energy, or both?

Short Answer

Expert verified
A catalyst is a substance that accelerates a chemical reaction without being consumed by providing an alternative reaction pathway with lower activation energy. Homogeneous catalysts exist in the same phase as the reactants, while heterogeneous catalysts exist in a different phase. Catalysts do not affect the overall enthalpy change (∆H) of a reaction, but they do lower the activation energy, allowing the reaction to proceed faster.

Step by step solution

01

(a) Definition of a Catalyst

A catalyst is a substance that speeds up the rate of a chemical reaction without being consumed in the reaction. It does so by providing an alternative reaction pathway or mechanism with a lower activation energy.
02

(b) Homogeneous vs Heterogeneous Catalysts

Homogeneous catalysts are those that are in the same phase (solid, liquid, or gas) as the reactants, and they usually form intermediate species with the reactants during the reaction. Heterogeneous catalysts, on the other hand, are in a different phase than the reactants and typically work by adsorbing the reactants onto their surface, where the reaction takes place.
03

(c) Effect of Catalysts on Enthalpy Change and Activation Energy

Catalysts do not affect the overall enthalpy change for a reaction, as they only provide an alternative pathway for the reaction to proceed. The overall enthalpy change (∆H) is a state function, which means it depends only on the initial and final states of the reactants and products, and not on the path taken to reach those states. However, catalysts do affect the activation energy of a reaction, as this is the minimum energy required for reactants to transform into products through a particular pathway. By providing an alternative pathway with a lower activation energy, catalysts allow the reaction to proceed faster, as more reactant molecules have enough energy to overcome the lowered activation energy barrier.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The enzyme carbonic anhydrase catalyzes the reaction \(\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}^{+}(a q) .\) In water, without the enzyme, the reaction proceeds with a rate constant of 0.039 \(\mathrm{s}^{-1}\) at \(25^{\circ} \mathrm{C}\) . In the presence of the enzyme in water, the reaction proceeds with a rate constant of \(1.0 \times 10^{6} \mathrm{s}^{-1}\) at \(25^{\circ} \mathrm{C}\) . Assuming the collision factor is the same for both situations, calculate the difference in activation energies for the uncatalyzed versus enzyme-catalyzed reaction.

The decomposition reaction of \(\mathrm{N}_{2} \mathrm{O}_{5}\) in carbon tetrachloride is \(2 \mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\) . The rate law is first order in \(\mathrm{N}_{2} \mathrm{O}_{5}\) . At \(64^{\circ} \mathrm{C}\) the rate constant is \(4.82 \times 10^{-3} \mathrm{s}^{-1}\) (a) Write the rate law for the reaction. (b) What is the rate of reaction when \(\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.0240 M ?(\mathbf{c})\) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is doubled to 0.0480\(M ?(\mathbf{d})\) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is halved to 0.0120 \(\mathrm{M} ?\)

Consider the following reaction: $$2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$$ (a) The rate law for this reaction is first order in \(\mathrm{H}_{2}\) and second order in \(\mathrm{NO}\) . Write the rate law. (b) If the rate constant for this reaction at 1000 \(\mathrm{K}\) is \(6.0 \times 10^{4} M^{-2} \mathrm{s}^{-1}\) what is the reaction rate when \([\mathrm{NO}]=0.035 M\) and \(\left[\mathrm{H}_{2}\right]=0.015 M ?\) (c) What is the reaction rate at 1000 \(\mathrm{K}\) when the concentration of \(\mathrm{NO}\) is increased to 0.10 \(\mathrm{M}\)while the concentration of \(\mathrm{H}_{2}\) is 0.010\(M ?\) (d) What is the reaction rate at 1000 \(\mathrm{K}\) if \([\mathrm{NO}]\) is decreased to 0.010 \(\mathrm{M}\) and \(\left[\mathrm{H}_{2}\right]\) is increased to 0.030 \(\mathrm{M}\) ?

The following mechanism has been proposed for the gasphase reaction of \(\mathrm{H}_{2}\) with ICl: $$\begin{array}{c}{\mathrm{H}_{2}(g)+\mathrm{ICl}(g) \longrightarrow \mathrm{HI}(g)+\mathrm{HCl}(g)} \\ {\mathrm{HI}(g)+\mathrm{ICl}(g) \longrightarrow \mathrm{I}_{2}(g)+\mathrm{HCl}(g)}\end{array}$$ \(\begin{array}{l}{\text { (a) Write the balanced equation for the overall reaction. }} \\ {\text { (b) Identify any intermediates in the mechanism. (c) If }}\end{array}\) the first step is slow and the second one is fast, which rate law do you expect to be observed for the overall reaction?

As described in Exercise 14.41 , the decomposition of sulfuryl chloride \(\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)\) is a first-order process. The rate constant for the decomposition at 660 \(\mathrm{K}\) is \(4.5 \times 10^{-2} \mathrm{s}^{-1}\) .half-life for this reaction? (b) If you start with 0.050\(M \mathrm{I}_{2}\) at this temperature, how much will remain after 5.12 s assuming that the iodine atoms do not recombine to form \(\mathrm{I}_{2}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free