Chapter 14: Problem 31
Consider the following reaction: $$\mathrm{CH}_{3} \mathrm{Br}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(a q)+\mathrm{Br}^{-}(a q)$$ The rate law for this reaction is first order in \(\mathrm{CH}_{3} \mathrm{Br}\) and first order in \(\mathrm{OH}^{-} .\) When \(\left[\mathrm{CH}_{3} \mathrm{Br}\right]\) is \(5.0 \times 10^{-3} \mathrm{M}\) and \(\left[\mathrm{OH}^{-}\right]\) is \(0.050 \mathrm{M},\) the reaction rate at 298 \(\mathrm{K}\) is 0.0432 \(\mathrm{M} / \mathrm{s}\) . (a) What is the value of the rate constant? (\mathbf{b} )What are the units of the rate constant? (c) What would happen to the rate if the concentration of OH \(^{-}\) were tripled? (d) What would happen to the rate if the concentration of both reactants were tripled?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.