Chapter 14: Problem 17
(a) What is meant by the term reaction rate? (b) Name three factors that can affect the rate of a chemical reaction. (c) Is the rate of disappearance of reactants always the same as the rate of appearance of products?
Chapter 14: Problem 17
(a) What is meant by the term reaction rate? (b) Name three factors that can affect the rate of a chemical reaction. (c) Is the rate of disappearance of reactants always the same as the rate of appearance of products?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the hypothetical reaction \(2 \mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{C}+\mathrm{D}\) . The following two-step mechanism is proposed for the reaction: $$ \begin{array}{l}{\text { Step } 1 : \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{X}} \\ {\text { Step } 2 : \mathrm{A}+\mathrm{X} \longrightarrow \mathrm{C}+\mathrm{D}}\end{array}$$ \(X\) is an unstable intermediate. (a) What is the predicted rate law expression if Step 1 is rate determining? (b) What is the predicted rate law expression if Step 2 is rate determining? (c) Your result for part (b) might be considered surprising for which of the following reasons: (i) The concentration of a product is in the rate law. (ii) There is a negative reaction order in the rate law. (ii) Both reasons (i) and (ii). (iv) Neither reasons (i) nor (ii).
Hydrogen sulfide \(\left(\mathrm{H}_{2} \mathrm{S}\right)\) is a common and troublesome pollutant in industrial wastewaters. One way to remove \(\mathrm{H}_{2} \mathrm{S}\) is to treat the water with chlorine, in which case the following reaction occurs: $$ \mathrm{H}_{2} \mathrm{S}(a q)+\mathrm{Cl}_{2}(a q) \longrightarrow \mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)$$ The rate of this reaction is first order in each reactant. The rate constant for the disappearance of \(\mathrm{H}_{2} \mathrm{S}\) at \(28^{\circ} \mathrm{C}\) is \(3.5 \times 10^{-2} \mathrm{M}^{-1} \mathrm{s}^{-1}\) . If at a given time the concentration of \(\mathrm{H}_{2} \mathrm{S}\) is \(2.0 \times 10^{-4} \mathrm{M}\) and that of \(\mathrm{Cl}_{2}\) is \(0.025 \mathrm{M},\) what is the rate of formation of \(\mathrm{Cl}^{-} ?\)
The decomposition reaction of \(\mathrm{N}_{2} \mathrm{O}_{5}\) in carbon tetrachloride is \(2 \mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\) . The rate law is first order in \(\mathrm{N}_{2} \mathrm{O}_{5}\) . At \(64^{\circ} \mathrm{C}\) the rate constant is \(4.82 \times 10^{-3} \mathrm{s}^{-1}\) (a) Write the rate law for the reaction. (b) What is the rate of reaction when \(\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.0240 M ?(\mathbf{c})\) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is doubled to 0.0480\(M ?(\mathbf{d})\) What happens to the rate when the concentration of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is halved to 0.0120 \(\mathrm{M} ?\)
(a) What are the units usually used to express the rates of reactions occurring in solution? (b) As the temperature increases, does the reaction rate increase or decrease? (c) As a reaction proceeds, does the instantaneous reaction rate increase or decrease?
Suppose that a certain biologically important reaction is quite slow at physiological temperature \(\left(37^{\circ} \mathrm{C}\right)\) in the absence of a catalyst. Assuming that the collision factor remains the same, by how much must an enzyme lower the activation energy of the reaction to achieve a \(1 \times 10^{5}\) -fold increase in the reaction rate?
What do you think about this solution?
We value your feedback to improve our textbook solutions.