Chapter 14: Problem 120
The gas-phase reaction of NO with \(\mathrm{F}_{2}\) to form \(\mathrm{NOF}\) and \(\mathrm{F}\) has an activation energy of \(E_{a}=6.3 \mathrm{kJ} / \mathrm{mol} .\) and a frequency factor of \(A=6.0 \times 10^{8} M^{-1} \mathrm{s}^{-1} .\) The reaction is believed to be bimolecular: $$ \mathrm{NO}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{NOF}(g)+\mathrm{F}(g)$$ (a) Calculate the rate constant at \(100^{\circ} \mathrm{C}\) . (b) Draw the Lewis structures for the NO and the NOF molecules, given that the chemical formula for NOF is misleading because the nitrogen atom is actually the central atom in the molecule, (c) Predict the shape for the NOF molecule.Draw a possible transition state for the formation of NOF, using dashed lines to indicate the weak bonds that are beginning to form. (e) Suggest a reason for the low activation energy for the reaction.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.