Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Indicate whether each statement is true or false: (a) If you compare the solubility of a gas in water at two different temperatures, you find the gas is more soluble at the lower temperature. (b) The solubility of most ionic solids in water decreases as the temperature of the solution increases. (c) The solubility of most gases in water decreases as the temperature increases because water is breaking its hydrogen bonding to the gas molecules as the temperature is raised. (d) Some ionic solids become less soluble in water as the temperature is raised.

Short Answer

Expert verified
(a) True: Gas solubility increases at lower temperatures due to Le Chatelier's principle. (b) False: Most ionic solids have increased solubility at higher temperatures. (c) True: Gas solubility decreases at higher temperatures due to breaking of hydrogen bonds. (d) True: Some ionic solids become less soluble at higher temperatures if the dissolution process is exothermic.

Step by step solution

01

Statement (a) states that if you compare the solubility of a gas in water at two different temperatures, you find the gas is more soluble at the lower temperature. This statement is true, due to a principle called Le Chatelier's principle. When the temperature is lowered, the solubility of a gas in water increases because the exothermic dissolution process is favored. #b-tag_title# Determine the truth of statement (b) about solubility of most ionic solids

Statement (b) states that the solubility of most ionic solids in water decreases as the temperature of the solution increases. This statement is false. In fact, the solubility of most ionic solids in water increases as the temperature of the solution increases. This is because an increase in temperature provides more kinetic energy to the solution, allowing for the lattice energy of the ionic solid to be overcome more easily, leading to increased solubility. #c-tag_title# Determine the truth of statement (c) about solubility of gases in water and hydrogen bonding
02

Statement (c) states that the solubility of most gases in water decreases as the temperature increases because water is breaking its hydrogen bonding to the gas molecules as the temperature is raised. This statement is true. As the temperature increases, the kinetic energy of the water molecules also increases, causing them to break their hydrogen bonds with the gas molecules. This results in a decrease in gas solubility at higher temperatures. #d-tag_title# Determine the truth of statement (d) about solubility of some ionic solids at higher temperatures

Statement (d) states that some ionic solids become less soluble in water as the temperature is raised. This statement is true. While most ionic solids become more soluble in water at higher temperatures, there are a few exceptions where the solubility decreases. This occurs when the dissolution process is exothermic (releases heat), and according to Le Chatelier's principle, increasing the temperature would shift the equilibrium to favor the reverse, undissolved state.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During a person's typical breathing cycle, the \(\mathrm{CO}_{2}\) concentration in the expired air rises to a peak of 4.6\(\%\) by volume. (a) Calculate the partial pressure of the CO \(_{2}\) in the expired air at its peak, assuming 1 atm pressure and a body temperature of \(37^{\circ} \mathrm{C}\) (b) What is the molarity of the \(\mathrm{CO}_{2}\) in the expired air at its peak, assuming a body temperature of \(37^{\circ} \mathrm{C} ?\)

List the following aqueous solutions in order of decreasing freezing point: 0.040 \(\mathrm{m}\) glycerin \(\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right), 0.020 \mathrm{m} \mathrm{KBr}\) 0.030 \(\mathrm{mphenol}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)\)

Soaps consist of compounds such as sodium stearate, \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}-\mathrm{Na}^{+},\) that have both hydrophobic and hydrophilic parts. Consider the hydrocarbon part of sodium stearate to be the "tail" and the charged part to be the "head." (a) Which part of sodium stearate, head or tail, is more likely to be solvated by water? (b) Grease is a complex mixture of (mostly) hydrophobic compounds. Which part of sodium stearate, head or tail, is most likely to bind to grease? (c) If you have large deposits of grease that you want to wash away with water, you can see that adding sodium stearate will help you produce an emulsion. What intermolecular interactions are responsible for this?

What is the osmotic pressure formed by dissolving 44.2 \(\mathrm{mg}\) of aspirin \(\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)\) in 0.358 \(\mathrm{L}\) of water at \(25^{\circ} \mathrm{C} ?\)

Describe how you would prepare each of the following aqueous solutions: (a) 1.50 \(\mathrm{L}\) of 0.110 \(\mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\) solution, starting with solid \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} ;\) (b) 225 \(\mathrm{g}\) of a solution that is 0.65 \(\mathrm{m}\) in \(\mathrm{Na}_{2} \mathrm{CO}_{3},\) starting with the solid solute; ( c ) 1.20 L of a solution that is 15.0\(\% \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) by mass (the density of the solution is 1.16 \(\mathrm{g} / \mathrm{mL}\) , starting with solid solute; (\boldsymbol{d} ) ~ a ~ 0.50 \(\mathrm{M}\) solution of HCl that would just neutralize 5.5 \(\mathrm{g}\) of \(\mathrm{Ba}(\mathrm{OH})_{2}\) starting with 6.0 \(\mathrm{M} \mathrm{HCl}\) .

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free