Chapter 10: Problem 89
(a) List two experimental conditions under which gases deviate from ideal behavior. (b) List two reasons why the gases deviate from ideal behavior.
Chapter 10: Problem 89
(a) List two experimental conditions under which gases deviate from ideal behavior. (b) List two reasons why the gases deviate from ideal behavior.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a mixture of two gases, \(A\) and \(B,\) confined in a closed vessel. A quantity of a third gas, \(C,\) is added to the same vessel at the same temperature. How does the addition of gas C affect the following: (a) the partial pressure of gas A, (b) the total pressure in the vessel, (c) the mole fraction of gas B?
A neon sign is made of glass tubing whose inside diameter is 2.5 \(\mathrm{cm}\) and whose length is 5.5 \(\mathrm{m}\) . If the sign contains neon at a pressure of 1.78 torr at \(35^{\circ} \mathrm{C}\) , how many grams of neon are in the sign? (The volume of a cylinder is \(\pi r^{2} h . )\)
A piece of dry ice (solid carbon dioxide) with a mass of 5.50 \(\mathrm{g}\) is placed in a 10.0 -L vessel that already contains air at 705 torr and \(24^{\circ} \mathrm{C}\) . After the carbon dioxide has totally sublimed, what is the partial pressure of the resultant CO\(_{2}\) gas, and the total pressure in the container at \(24^{\circ} \mathrm{C} ?\)
Which one or more of the following statements are true? \begin{equation}\begin{array}{l}{\text { (a) } \mathrm{O}_{2} \text { will effuse faster than } \mathrm{Cl}_{2} \text { . }} \\ {\text { (b) Effusion and diffusion are different names for the same }} \\ {\text { process. }} \\\ {\text { (c) Perfume molecules travel to your nose by the process of }} \\\ {\text { effusion. }} \\ {\text { (d) The higher the density of a gas, the shorter the mean }} \\ {\text { free path. }}\end{array}\end{equation}
Gas pipelines are used to deliver natural gas (methane, \(\mathrm{CH}_{4}\) ) to the various regions of the United States. The total volume of natural gas that is delivered is on the order of \(2.7 \times 10^{12} \mathrm{L}\) per day, measured at STP. Calculate the total enthalpy change for combustion of this quantity of methane. (Note: Less than this amount of methane is actually combusted daily. Some of the delivered gas is passed through to other regions.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.