Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term orbital overlap? (b) Describe what a chemical bond is in terms of electron density between two atoms.

Short Answer

Expert verified
(a) Orbital overlap is the interaction between the atomic orbitals of two adjacent atoms, occurring in a spatial region, leading to the formation of molecular orbitals and chemical bonds. (b) A chemical bond in terms of electron density is the region of increased electron density between two atoms due to their interaction and partial sharing of electrons, which stabilizes the system and holds the atoms together.

Step by step solution

01

(a) Orbital Overlap Definition

Orbital overlap refers to the spatial region where the wave functions (orbitals) of two adjacent atoms come together and interact. The atomic orbitals of individual atoms overlap with each other, resulting in the formation of a new type of orbital, known as a molecular orbital. The overlapping region has a higher probability of finding electrons, as they are shared between the two atoms. This interaction leads to the formation of chemical bonds in molecules.
02

(b) Chemical Bond Definition in Terms of Electron Density

A chemical bond in terms of electron density can be described as the region where the electron density is higher between two atoms, due to their interaction and partial sharing of electrons in their respective orbitals. As the atoms approach each other, their atomic orbitals start to overlap, resulting in an increase in electron density between them. This increased electron density stabilizes the system, as it reduces the potential energy between the atoms and holds them together, forming a chemical bond.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Propylene, \(\mathrm{C}_{3} \mathrm{H}_{6}\), is a gas that is used to form the important polymer called polypropylene. Its Lewis structure is (a) What is the total number of valence electrons in the propylene molecule? (b) How many valence electrons are used to make \(\sigma\) bonds in the molecule? (c) How many valence electrons are used to make \(\pi\) bonds in the molecule? (d) How many valence electrons remain in nonbonding pairs in the molecule? (e) What is the hybridization at each carbon atom in the molecule?

Give the electron-domain and molecular geometries for the following molecules and ions: (a) \(\mathrm{HCN}\), (b) \(\mathrm{SO}_{3}^{2-}\), (c) \(\mathrm{SF}_{4}\), (d) \(\mathrm{PF}_{6}^{-}\), (e) \(\mathrm{NH}_{3} \mathrm{Cl}^{+}\), (f) \(\mathrm{N}_{3}^{-}\).

A compound composed of \(2.1 \% \mathrm{H}, 29.8 \% \mathrm{~N}\), and \(68.1 \% \mathrm{O}\) has a molar mass of approximately \(50 \mathrm{~g} / \mathrm{mol}\). (a) What is the molecular formula of the compound? (b) What is its Lewis structure if \(\mathrm{H}\) is bonded to \(\mathrm{O}\) ? (c) What is the geometry of the molecule? (d) What is the hybridization of the orbitals around the \(\mathrm{N}\) atom? (e) How many \(\sigma\) and how many \(\pi\) bonds are there in the molecule?

In the formate ion, \(\mathrm{HCO}_{2}{ }^{-}\), the carbon atom is the central atom with the other three atoms attached to it. (a) Draw a Lewis structure for the formate ion. (b) What hybridization is exhibited by the \(\mathrm{C}\) atom? (c) Are there multiple equivalent resonance structures for the ion? (d) Which of the atoms in the ion have \(p_{\pi}\) orbitals? (e) How many electrons are in the \(\pi\) system of the ion?

Consider a molecule with formula \(\mathrm{AX}_{3}\). Supposing the \(\mathrm{A}-\mathrm{X}\) bond is polar, how would you expect the dipole moment of the \(\mathrm{AX}_{3}\) molecule to change as the \(\mathrm{X}-\mathrm{A}-\mathrm{X}\) bond angle increases from \(100^{\circ}\) to \(120^{\circ}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free