Chapter 9: Problem 35
What is the distinction between a bond dipole and a molecular dipole moment?
Chapter 9: Problem 35
What is the distinction between a bond dipole and a molecular dipole moment?
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the electron configuration for the first excited state for \(\mathrm{N}_{2}\), that is, the state with the highest-energy electron moved to the next available energy level. (a) Is the nitrogen in its first excited state diamagnetic or paramagnetic? (b) Is the \(\mathrm{N}-\mathrm{N}\) bond strength in the first excited state stronger or weaker compared to that in the ground state?
(a) The \(\mathrm{PH}_{3}\) molecule is polar. Does this offer experimental proof that the molecule cannot be planar? Explain. (b) It turns out that ozone, \(\mathrm{O}_{3}\), has a small dipole moment. How is this possible, given that all the atoms are the same?
If we assume that the energy-level diagrams for homonuclear diatomic molecules shown in Figure \(9.43\) can be applied to heteronuclear diatomic molecules and ions, predict the bond order and magnetic behavior of (a) \(\mathrm{CO}^{+}\), (b) \(\mathrm{NO}^{-}\), (c) \(\mathrm{OF}^{+}\), (d) \(\mathrm{NeF}^{+}\).
Give the electron-domain and molecular geometries of a molecule that has the following electron domains on its central atom: (a) four bonding domains and no nonbonding domains, (b) three bonding domains and two nonbonding domains, (c) five bonding domains and one nonbonding domain, (d) four bonding domains and two nonbonding domains.
There are two compounds of the formula \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\) : The compound on the right, cisplatin, is used in cancer therapy. The compound on the left, transplatin, is ineffective for cancer therapy. Both compounds have a square-planar geometry. (a) Which compound has a nonzero dipole moment? (b) The reason cisplatin is a good anticancer drug is that it binds tightly to DNA. Cancer cells are rapidly dividing, producing a lot of DNA. Consequently, cisplatin kills cancer cells at a faster rate than normal cells. However, since normal cells also are making DNA, cisplatin also attacks healthy cells, which leads to unpleasant side effects. The way both molecules bind to DNA involves the \(\mathrm{Cl}^{-}\)ions leaving the Pt ion, to be replaced by two nitrogens in DNA. Draw a picture in which a long vertical line represents a piece of DNA. Draw the \(\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\) fragments of cisplatin and transplatin with the proper shape. Also draw them attaching to your DNA line. Can you explain from your drawing why the shape of the cisplatin causes it to bind to DNA more effectively than transplatin?
What do you think about this solution?
We value your feedback to improve our textbook solutions.