Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) How does one determine the number of electron domains in a molecule or ion? (b) What is the difference between a bonding electron domain and a nonbonding electron domain?

Short Answer

Expert verified
To determine the number of electron domains in a molecule or ion, first, identify the central atom and count the electron regions around it, including single, double, or triple bonds and lone pairs. A bonding electron domain is a region of electron density involved in covalent bonds between atoms (single, double, or triple bonds). In contrast, a nonbonding electron domain is a region of electron density not involved in bonding between atoms, typically as lone pairs or unshared pairs of electrons on the central atom.

Step by step solution

01

(a) Determining the number of electron domains in a molecule or ion

To determine the number of electron domains in a molecule or ion, first, identify the central atom. Then, count the regions around the central atom where electrons are found, keeping in mind that these electrons can be involved in bonding (either single, double, or triple bonds) or present as lone pairs. An electron domain can be: 1. A single bond (e.g., in CH4, the bond between C and each H counts as an electron domain) 2. A double bond (e.g., in CO2, each double bond between C and O counts as a single electron domain) 3. A triple bond (e.g., in N2, the triple bond between the two N atoms counts as a single electron domain) 4. A lone pair (e.g., in NH3, the lone pair on N counts as an electron domain) The total number of such electron domains gives us the electron-domain geometry of the molecule.
02

(b) Difference between a bonding and nonbonding electron domain

A bonding electron domain is a region of electron density that is involved in covalent bonds between atoms, which can be single, double, or triple bonds. In each case, the bonding electron domain counts as one region of electron density, regardless of the number of bonds involved. A nonbonding electron domain, on the other hand, is a region of electron density that is not involved in bonding between atoms. These are usually in the form of lone pairs or unshared pairs of electrons on the central atom. The presence of nonbonding electron domains can influence the shape of the molecule as they can cause repulsion with the bonding electron domains.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write the electron configuration for the first excited state for \(\mathrm{N}_{2}\), that is, the state with the highest-energy electron moved to the next available energy level. (a) Is the nitrogen in its first excited state diamagnetic or paramagnetic? (b) Is the \(\mathrm{N}-\mathrm{N}\) bond strength in the first excited state stronger or weaker compared to that in the ground state?

Sulfur tetrafluoride \(\left(\mathrm{SF}_{4}\right)\) reacts slowly with \(\mathrm{O}_{2}\) to form sulfur tetrafluoride monoxide \(\left(\mathrm{OSF}_{4}\right)\) according to the following unbalanced reaction: $$ \mathrm{SF}_{4}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{OSF}_{4}(g) $$ The \(\mathrm{O}\) atom and the four \(\mathrm{F}\) atoms in \(\mathrm{OSF}_{4}\) are bonded to a central \(\mathrm{S}\) atom. (a) Balance the equation. (b) Write a Lewis structure of \(\mathrm{OSF}_{4}\) in which the formal charges of all atoms are zero. (c) Use average bond enthalpies (Table 8.4) to estimate the enthalpy of the reaction. Is it endothermic or exothermic? (d) Determine the electron-domain geometry of \(\mathrm{OSF}_{4}\), and write two possible molecular geometries for the molecule based on this electron-domain geometry. (e) Which of the molecular geometries in part (d) is more likely to be observed for the molecule? Explain.

The diagram that follows shows the highest-energy occupied MOs of a neutral molecule \(\mathrm{CX},\) where element \(\mathrm{X}\) is in the same row of the periodic table as C. (a) Based on the number of electrons, can you determine the identity of \(X ?\) (b) Would the molecule be diamagnetic or paramagnetic? (c) Consider the \(\pi_{2 p}\) MOs of the molecule. Would you expect them to have a greater atomic orbital contribution from \(\mathrm{C}\), have a greater atomic orbital contribution from \(X\), or be an equal mixture of atomic orbitals from the two atoms? [Section 9.8\(]\) $$ \begin{array}{l|l|l|} \cline { 2 - 3 } \sigma_{2 p} & \multicolumn{1}{c} {1} \\ \cline { 2 - 3 } \pi_{2 p} & 1 \downarrow & 1 \downarrow \\ \hline \end{array} $$

In which of the following \(\mathrm{AF}_{n}\) molecules or ions is there more than one \(\mathrm{F}-\mathrm{A}-\mathrm{F}\) bond angle: \(\mathrm{SiF}_{4}, \mathrm{PF}_{5}, \mathrm{SF}_{4}, \mathrm{AsF}_{3}\) ?

(a) What does the term paramagnetism mean? (b) How can one determine experimentally whether a substance is paramagnetic? (c) Which of the following ions would you expect to be paramagnetic: \(\mathrm{O}_{2}^{+}, \mathrm{N}_{2}{ }^{2-}, \mathrm{Li}_{2}^{+}, \mathrm{O}_{2}{ }^{2-}\) ? For those ions that are paramagnetic, determine the number of unpaired electrons.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free