Chapter 9: Problem 16
Describe the bond angles to be found in each of the following molecular structures: (a) trigonal planar, (b) tetrahedral, (c) octahedral, (d) linear.
Chapter 9: Problem 16
Describe the bond angles to be found in each of the following molecular structures: (a) trigonal planar, (b) tetrahedral, (c) octahedral, (d) linear.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow does a trigonal pyramid differ from a tetrahedron so far as molecular geometry is concerned?
The reaction of three molecules of fluorine gas with a Xe atom produces the substance xenon hexafluoride, \(\mathrm{XeF}_{6}\) : $$ \mathrm{Xe}(g)+3 \mathrm{~F}_{2}(g) \rightarrow \mathrm{XeF}_{6}(s) $$ (a) Draw a Lewis structure for \(\mathrm{XeF}_{6}\). (b) If you try to use the VSEPR model to predict the molecular geometry of \(\mathrm{XeF}_{6}\), you run into a problem. What is it? (c) What could you do to resolve the difficulty in part (b)? (d) The molecule IF h has a pentagonal-bipyramidal structure (five equatorial fluorine atoms at the vertices of a regular pentagon and two axial fluorine atoms). Based on the structure of \(\mathrm{IF}_{7}\), suggest a structure for \(\mathrm{XeF}_{6}\).
Acetylsalicylic acid, better known as aspirin, has the Lewis structure (a) What are the approximate values of the bond angles labeled 1,2 , and 3 ? (b) What hybrid orbitals are used about the central atom of each of these angles? (c) How many \(\sigma\) bonds are in the molecule?
Azo dyes are organic dyes that are used for many applications, such as the coloring of fabrics. Many azo dyes are derivatives of the organic substance azobenzene, \(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{N}_{2}\) . A closely related substance is hydrazobenzene, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{N}_{2}$ . The Lewis structures of these two substances are (Recall the shorthand notation used for benzene.) (a) What is the hybridization at the N atom in each of the substances? (b) How many unhybridized atomic orbitals are there on the N and the C atoms in each of the substances? (c) Predict the \(N-N-C\) angles in each of the substances. (d) Azobenzene is said to have greater delocalization of its \(\pi\) electrons than hydrazobenzene. Discuss this statement in light of your answers to (a) and (b). (e) All the atoms of azobenzene lie in one plane, whereas those of hydrazobenzene do not. Is this observation consistent with the statement in part (d)? (f) Azobenzene is an intense red-orange color, whereas hydrazobenzene is nearly colorless. Which molecule would be a better one to use in a solar energy conversion device? (See the "Chemistry Put to Work" box for more information about solar cells.)
(a) If the valence atomic orbitals of an atom are sp hybridized, how many unhybridized \(p\) orbitals remain in the valence shell? How many \(\pi\) bonds can the atom form? (b) Imagine that you could hold two atoms that are bonded together, twist them, and not change the bond length. Would it be easier to twist (rotate) around a single \(\sigma\) bond or around a double ( \(\sigma\) plus \(\pi\) ) bond, or would they be the same?
What do you think about this solution?
We value your feedback to improve our textbook solutions.