Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using values from Appendix \(C\), calculate the standard enthalpy change for each of the following reactions: (a) \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g)\) (b) \(\mathrm{Mg}(\mathrm{OH})_{2}(s) \longrightarrow \mathrm{MgO}(s)+\mathrm{H}_{2} \mathrm{O}(l)\) (c) \(\mathrm{N}_{2} \mathrm{O}_{4}(g)+4 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)\) (d) \(\mathrm{SiCl}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{SiO}_{2}(s)+4 \mathrm{HCl}(g)\)

Short Answer

Expert verified
The standard enthalpy changes for the given reactions are: (a) -197.8 kJ/mol (b) 37.5 kJ/mol (c) -976.36 kJ/mol (d) -51.6 kJ/mol

Step by step solution

01

(a) Reaction: 2 SO₂(g) + O₂(g) → 2 SO₃(g)

To calculate the standard enthalpy change, we first look up the values of the standard enthalpy of formation (ΔH°f) for each species in the reaction. From Appendix C, we have: \(ΔH°f [SO₂(g)] = -296.8 \ \text{kJ/mol}\) Since there is no formation involved in the formation of elemental O₂, its value is: \(ΔH°f [O₂(g)] = 0\) \(ΔH°f [SO₃(g)] = -395.7 \ \text{kJ/mol}\) Now we apply the formula: ΔH°rxn = Σ n ΔH°f(products) - Σ n ΔH°f(reactants) For this reaction, it is: ΔH°rxn = [2 × (-395.7) ] - [ 2 × (-296.8) + 1 × 0] Calculate the value: ΔH°rxn = -791.4 + 593.6 = -197.8 kJ/mol
02

(b) Reaction: Mg(OH)₂(s) → MgO(s) + H₂O(l)

From Appendix C, we have: \(ΔH°f [Mg(OH)₂(s)] = -924.9 \ \text{kJ/mol}\) \(ΔH°f [MgO(s)] = -601.6 \ \text{kJ/mol}\) \(ΔH°f [H₂O(l)] = -285.8 \ \text{kJ/mol}\) Apply the formula: ΔH°rxn = [(-601.6) + (-285.8) ] - [ (-924.9)] Calculate the value: ΔH°rxn = -887.4 + 924.9 = 37.5 kJ/mol
03

(c) Reaction: N₂O₄(g) + 4 H₂(g) → N₂(g) + 4 H₂O(g)

From Appendix C, we have: \(ΔH°f [N₂O₄(g)] = 9.16 \ \text{kJ/mol}\) \(ΔH°f [H₂(g)] = 0\) \(ΔH°f [N₂(g)] = 0\) \(ΔH°f [H₂O(g)] = -241.8 \ \text{kJ/mol}\) Apply the formula: ΔH°rxn = [1 × 0 + 4 × (-241.8) ] - [ 1 × 9.16 + 4 × 0] Calculate the value: ΔH°rxn = -967.2 - 9.16 = -976.36 kJ/mol
04

(d) Reaction: SiCl₄(l) + 2 H₂O(l) → SiO₂(s) + 4 HCl(g)

From Appendix C, we have: \(ΔH°f [SiCl₄(l)] = -657.5 \ \text{kJ/mol}\) \(ΔH°f [H₂O(l)] = -285.8 \ \text{kJ/mol}\) \(ΔH°f [SiO₂(s)] = -911.5 \ \text{kJ/mol}\) \(ΔH°f [HCl(g)] = -92.3 \ \text{kJ/mol}\) Apply the formula: ΔH°rxn = [(-911.5) + 4 × (-92.3) ] - [ (-657.5) + 2 × (-285.8) ] Calculate the value: ΔH°rxn = -911.5 - 369.2 + 657.5 + 571.6 = -51.6 kJ/mol So, the standard enthalpy changes for the given reactions are: (a) -197.8 kJ/mol (b) 37.5 kJ/mol (c) -976.36 kJ/mol (d) -51.6 kJ/mol

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Gasoline is composed primarily of hydrocarbons, including many with eight carbon atoms, called octanes. One of the cleanestburning octanes is a compound called 2,3,4-trimethylpentane, which has the following structural formula: CC(C)C(C)C(C)C The complete combustion of one mole of this compound to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\) leads to \(\Delta H^{\circ}=-5064.9 \mathrm{~kJ} / \mathrm{mol}\). (a) Write a balanced equation for the combustion of \(1 \mathrm{~mol}\) of \(\mathrm{C}_{8} \mathrm{H}_{18}(l)\). (b) By using the information in this problem and data in Table 5.3, calculate \(\Delta H_{f}^{\circ}\) for \(2,3,4\)-trimethylpentane.

Imagine that you are climbing a mountain. (a) Is the distance you travel to the top a state function? Why or why not? (b) Is the change in elevation between your base camp and the peak a state function? Why or why not? [Section 5.2]

(a) A serving of a particular ready-to-serve chicken noodle soup contains \(2.5 \mathrm{~g}\) fat, \(14 \mathrm{~g}\) carbohydrate, and \(7 \mathrm{~g}\) protein. Estimate the number of Calories in a serving. (b) According to its nutrition label, the same soup also contains \(690 \mathrm{mg}\) of sodium. Do you think the sodium contributes to the caloric content of the soup?

Assume that the following reaction occurs at constant pressure: $$ 2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{AlCl}_{3}(s) $$ (a) If you are given \(\Delta H\) for the reaction, what additional information do you need to determine \(\Delta E\) for the process? (b) Which quantity is larger for this reaction? (c) Explain your answer to part (b).

Diethyl ether, \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}(l)\), a flammable compound that has long been used as a surgical anesthetic, has the structure $$ \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3} $$ The complete combustion of \(1 \mathrm{~mol}\) of \(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}(l)\) to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(I)\) yields \(\Delta H^{\circ}=-2723.7 \mathrm{~kJ}\). (a) Write a balanced equation for the combustion of \(1 \mathrm{~mol}\) of \(\mathrm{C}_{4} \mathrm{H}_{40} \mathrm{O}(l)\). (b) By using the information in this problem and data in Table 5.3, calculate \(\Delta H_{f}^{\circ}\) for diethyl ether.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free