Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term standard conditions with reference to enthalpy changes? (b) What is meant by the term enthalpy of formation? (c) What is meant by the term standard enthalpy of formation?

Short Answer

Expert verified
(a) Standard conditions refer to the specific conditions, typically 298 K (25°C) and 1 atm (101.3 kPa), under which enthalpy changes are measured, ensuring consistency and comparability across experiments. (b) Enthalpy of formation is the change in enthalpy when one mole of a compound is formed from its constituent elements in their most stable forms at constant pressure. (c) Standard enthalpy of formation, represented as ΔHf°, is the change in enthalpy when one mole of a compound is formed from its constituent elements in their most stable forms under standard conditions (298 K and 1 atm of pressure).

Step by step solution

01

(a) Definition of Standard Conditions

Standard conditions, with reference to enthalpy changes, refer to the specific conditions under which the measurements (like enthalpy changes) are taken. The standard conditions are set to ensure consistency and comparability in results across various experiments. Some common standard conditions are temperature at 298 K (25°C) and pressure at 1 atm (101.3 kPa).
02

(b) Definition of Enthalpy of Formation

Enthalpy of formation is the change in enthalpy (heat content) when one mole of a compound is formed from its constituent elements in their most stable forms (reference states) at constant pressure.
03

(c) Definition of Standard Enthalpy of Formation

Standard enthalpy of formation is the change in enthalpy when one mole of a compound is formed from its constituent elements in their most stable forms under standard conditions (298 K and 1 atm of pressure). It is represented as ΔHf°, where the superscript "°" denotes the standard state. Standard enthalpy of formation can be either positive or negative depending on whether the formation process is endothermic (absorbing heat) or exothermic (releasing heat), respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

From the enthalpies of reaction $$ \begin{array}{rlr} \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \longrightarrow 2 \mathrm{HF}(g) & \Delta H=-537 \mathrm{~kJ} \\ \mathrm{C}(s)+2 \mathrm{~F}_{2}(g) \longrightarrow \mathrm{CF}_{4}(g) & \Delta H=-680 \mathrm{~kJ} \\ 2 \mathrm{C}(s)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g) & \Delta H=+52.3 \mathrm{~kJ} \end{array} $$ calculate \(\Delta H\) for the reaction of ethylene with \(\mathrm{F}_{2}\) : $$ \mathrm{C}_{2} \mathrm{H}_{4}(g)+6 \mathrm{~F}_{2}(g) \longrightarrow 2 \mathrm{CF}_{4}(g)+4 \mathrm{HF}(g) $$

Ozone, \(\mathrm{O}_{3}(g)\), is a form of elemental oxygen that plays an important role in the absorption of ultraviolet radiation in the stratosphere. It decomposes to \(\mathrm{O}_{2}(g)\) at room temperature and pressure according to the following reaction: $$ 2 \mathrm{O}_{3}(g) \longrightarrow 3 \mathrm{O}_{2}(g) \quad \Delta H=-284.6 \mathrm{~kJ} $$ (a) What is the enthalpy change for this reaction per mole of \(\mathrm{O}_{3}(g) ?\) (b) Which has the higher enthalpy under these conditions, \(2 \mathrm{O}_{3}(\mathrm{~g})\) or \(3 \mathrm{O}_{2}(\mathrm{~g})\) ?

The standard enthalpies of formation of gaseous propyne \(\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\), propylene \(\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)\), and propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\) are \(+185.4,+20.4\), and \(-103.8 \mathrm{~kJ} / \mathrm{mol}\), respectively. (a) Calculate the heat evolved per mole on combustion of each substance to yield \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). (b) Calculate the heat evolved on combustion of \(1 \mathrm{~kg}\) of each substance. (c) Which is the most efficient fuel in terms of heat evolved per unit mass?

(a) A baseball weighs \(5.13 \mathrm{oz}\). What is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher at \(95.0 \mathrm{mi} / \mathrm{h}\) ? (b) By what factor will the kinetic energy change if the speed of the baseball is decreased to \(55.0 \mathrm{mi} / \mathrm{h}\) ? (c) What happens to the kinetic energy when the baseball is caught by the catcher?

Assume that the following reaction occurs at constant pressure: $$ 2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{AlCl}_{3}(s) $$ (a) If you are given \(\Delta H\) for the reaction, what additional information do you need to determine \(\Delta E\) for the process? (b) Which quantity is larger for this reaction? (c) Explain your answer to part (b).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free