Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is the volume of a system a state function? Why or why not?

Short Answer

Expert verified
(a) A state function is a property of a system that depends only on its current state, determined by factors such as temperature, pressure, and composition, and is independent of the path taken to reach that state. (b) An example of a state function is internal energy (U), while an example of a non-state function is heat (q) or work (w). (c) Yes, the volume of a system is a state function, as it depends only on the current state of the system and is independent of the path taken to reach that state.

Step by step solution

01

Define state function

A state function is a property of a system that depends only on its current state, which is determined by its temperature, pressure, and composition. The value of a state function is independent of the path taken to reach that particular state. In other words, it only depends on the initial and final states of the system, not on the process between those states.
02

Provide an example of a state function and a non-state function

An example of a state function is internal energy (U). The internal energy of a system depends only on its current state, so it is independent of the path taken to reach that state. A quantity that is not a state function is heat (q) or work (w). Both heat and work depend on the path taken during the process, so they are not state functions.
03

Determine if volume is a state function and explain why or why not

The volume of a system is a state function. The volume depends only on the current state of the system, which is determined by factors such as temperature, pressure, and composition, and is independent of the path taken to reach that particular state. This is because the volume of a system is an extensive property that could be calculated by adding up the volumes of any subsystems based on their states, without the need to consider the history or path of how the system reached the given state.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The automobile fuel called E85 consists of \(85 \%\) ethanol and \(15 \%\) gasoline. E85 can be used in the so-called flex-fuel vehicles (FFVs), which can use gasoline, ethanol, or a mix as fuels. Assume that gasoline consists of a mixture of octanes (different isomers of \(\mathrm{C}_{8} \mathrm{H}_{18}\) ), that the average heat of combustion of \(\mathrm{C}_{8} \mathrm{H}_{18}(l)\) is \(5400 \mathrm{~kJ} / \mathrm{mol}\), and that gasoline has an average

Under constant-volume conditions, the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(3.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increases from \(20.94\) to \(24.72{ }^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?

At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat \(\mathrm{KClO}_{3}\) : $$ 2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g) \quad \Delta H=-89.4 \mathrm{~kJ} $$ For this reaction, calculate \(\Delta H\) for the formation of (a) \(1.36\) \(\mathrm{mol}\) of \(\mathrm{O}_{2}\) and (b) \(10.4 \mathrm{~g}\) of \(\mathrm{KCl}\). (c) The decomposition of \(\mathrm{KClO}_{3}\) proceeds spontaneously when it is heated. Do you think that the reverse reaction, the formation of \(\mathrm{KClO}_{3}\) from \(\mathrm{KCl}\) and \(\mathrm{O}_{2}\), is likely to be feasible under ordinary conditions? Explain your answer.

At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat \(\mathrm{KClO}_{3}\) : $$ 2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g) \quad \Delta H=-89.4 \mathrm{~kJ} $$ For this reaction, calculate \(\Delta H\) for the formation of (a) \(1.36\) \(\mathrm{mol}\) of \(\mathrm{O}_{2}\) and (b) \(10.4 \mathrm{~g}\) of \(\mathrm{KCl}\). (c) The decomposition of \(\mathrm{KClO}_{3}\) proceeds spontaneously when it is heated. Do you think that the reverse reaction, the formation of \(\mathrm{KClO}_{3}\) from \(\mathrm{KCl}\) and \(\mathrm{O}_{2}\), is likely to be feasible under ordinary conditions? Explain your answer.

Consider the combustion of liquid methanol, \(\mathrm{CH}_{3} \mathrm{OH}(l)\) : $$ \begin{array}{r} \mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H=-726.5 \mathrm{~kJ} \end{array} $$ (a) What is the enthalpy change for the reverse reaction? (b) Balance the forward reaction with whole-number coefficients. What is \(\Delta H\) for the reaction represented by this equation? (c) Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction? (d) If the reaction were written to produce \(\mathrm{H}_{2} \mathrm{O}(g)\) instead of \(\mathrm{H}_{2} \mathrm{O}(l)\), would you expect the magnitude of \(\Delta H\) to increase, decrease, or stay the same? Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free