Chapter 5: Problem 29
(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is the volume of a system a state function? Why or why not?
Chapter 5: Problem 29
(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is the volume of a system a state function? Why or why not?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe automobile fuel called E85 consists of \(85 \%\) ethanol and \(15 \%\) gasoline. E85 can be used in the so-called flex-fuel vehicles (FFVs), which can use gasoline, ethanol, or a mix as fuels. Assume that gasoline consists of a mixture of octanes (different isomers of \(\mathrm{C}_{8} \mathrm{H}_{18}\) ), that the average heat of combustion of \(\mathrm{C}_{8} \mathrm{H}_{18}(l)\) is \(5400 \mathrm{~kJ} / \mathrm{mol}\), and that gasoline has an average
Under constant-volume conditions, the heat of combustion of glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) is \(15.57 \mathrm{~kJ} / \mathrm{g}\). A \(3.500-\mathrm{g}\) sample of glucose is burned in a bomb calorimeter. The temperature of the calorimeter increases from \(20.94\) to \(24.72{ }^{\circ} \mathrm{C}\). (a) What is the total heat capacity of the calorimeter? (b) If the size of the glucose sample had been exactly twice as large, what would the temperature change of the calorimeter have been?
At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat \(\mathrm{KClO}_{3}\) : $$ 2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g) \quad \Delta H=-89.4 \mathrm{~kJ} $$ For this reaction, calculate \(\Delta H\) for the formation of (a) \(1.36\) \(\mathrm{mol}\) of \(\mathrm{O}_{2}\) and (b) \(10.4 \mathrm{~g}\) of \(\mathrm{KCl}\). (c) The decomposition of \(\mathrm{KClO}_{3}\) proceeds spontaneously when it is heated. Do you think that the reverse reaction, the formation of \(\mathrm{KClO}_{3}\) from \(\mathrm{KCl}\) and \(\mathrm{O}_{2}\), is likely to be feasible under ordinary conditions? Explain your answer.
At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat \(\mathrm{KClO}_{3}\) : $$ 2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g) \quad \Delta H=-89.4 \mathrm{~kJ} $$ For this reaction, calculate \(\Delta H\) for the formation of (a) \(1.36\) \(\mathrm{mol}\) of \(\mathrm{O}_{2}\) and (b) \(10.4 \mathrm{~g}\) of \(\mathrm{KCl}\). (c) The decomposition of \(\mathrm{KClO}_{3}\) proceeds spontaneously when it is heated. Do you think that the reverse reaction, the formation of \(\mathrm{KClO}_{3}\) from \(\mathrm{KCl}\) and \(\mathrm{O}_{2}\), is likely to be feasible under ordinary conditions? Explain your answer.
Consider the combustion of liquid methanol, \(\mathrm{CH}_{3} \mathrm{OH}(l)\) : $$ \begin{array}{r} \mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H=-726.5 \mathrm{~kJ} \end{array} $$ (a) What is the enthalpy change for the reverse reaction? (b) Balance the forward reaction with whole-number coefficients. What is \(\Delta H\) for the reaction represented by this equation? (c) Which is more likely to be thermodynamically favored, the forward reaction or the reverse reaction? (d) If the reaction were written to produce \(\mathrm{H}_{2} \mathrm{O}(g)\) instead of \(\mathrm{H}_{2} \mathrm{O}(l)\), would you expect the magnitude of \(\Delta H\) to increase, decrease, or stay the same? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.