Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Write an equation that expresses the first law of thermodynamics in terms of heat and work. (b) Under what conditions will the quantities \(q\) and \(w\) be negative numbers?

Short Answer

Expert verified
(a) The first law of thermodynamics is represented as: \[ \Delta U = q + w \] (b) The conditions under which \(q\) and \(w\) will be negative numbers are: - For \(q\): The system must lose heat to its surroundings. - For \(w\): Work must be done on the system.

Step by step solution

01

(a) Writing the first law of thermodynamics in terms of heat and work:

The first law of thermodynamics is represented as: \[ \Delta U = q + w \] Where: - ΔU is the change in internal energy of the system - q is the heat transferred to or from the system - w is the work done by or on the system
02

(b) Conditions when \(q\) and \(w\) are negative:

For heat (q) and work (w) to be negative, we need to consider their sign conventions. - For heat (q): - If the system gains heat, q is positive. - If the system loses heat, q is negative. - For work (w): - If work is done by the system, w is positive. - If work is done on the system, w is negative. So, the conditions under which \(q\) and \(w\) will be negative numbers are: - For \(q\): The system must lose heat to its surroundings. - For \(w\): Work must be done on the system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a system consisting of the following apparatus, in which gas is confined in one flask and there is a vacuum in the other flask. The flasks are separated by a valve. Assume that the flasks are perfectly insulated and will not allow the flow of heat into or out of the flasks to the surroundings. When the valve is opened, gas flows from the filled flask to the evacuated one. (a) Is work performed during the expansion of the gas? (b) Why or why not? (c) Can you determine the value of \(\Delta E\) for the process?

(a) When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter (Figure 5.18), the temperature rises \(1.642^{\circ} \mathrm{C}\). When a \(0.265-\mathrm{g}\) sample of caffeine, \(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{4}\), is burned, the temperature rises \(1.525^{\circ} \mathrm{C}\). Using the value \(26.38 \mathrm{~kJ} / \mathrm{g}\) for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume. (b) Assuming that there is an uncertainty of \(0.002^{\circ} \mathrm{C}\) in each temperature reading and that the masses of samples are measured to \(0.001 \mathrm{~g}\), what is the estimated uncertainty in the value calculated for the heat of combustion per mole of caffeine?

For the following processes, calculate the change in internal energy of the system and determine whether the process is endothermic or exothermic: (a) A balloon is heated by adding 850 J of heat. It expands, doing $382 \mathrm{~J}\( of work on the atmosphere. (b) A \)50-g$ sample of water is cooled from \(30^{\circ} \mathrm{C}\) to \(15^{\circ} \mathrm{C}\), thereby losing approximately \(3140 \mathrm{~J}\) of heat. (c) A chemical reaction releases \(6.47 \mathrm{~kJ}\) of heat and does no work on the surroundings.

The standard enthalpies of formation of gaseous propyne \(\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\), propylene \(\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)\), and propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\) are \(+185.4,+20.4\), and \(-103.8 \mathrm{~kJ} / \mathrm{mol}\), respectively. (a) Calculate the heat evolved per mole on combustion of each substance to yield \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). (b) Calculate the heat evolved on combustion of \(1 \mathrm{~kg}\) of each substance. (c) Which is the most efficient fuel in terms of heat evolved per unit mass?

(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is the volume of a system a state function? Why or why not?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free