Chapter 5: Problem 21
Identify the force present and explain whether work is being performed in the following cases: (a) You lift a pencil off the top of a desk. (b) A spring is compressed to half its normal length.
Chapter 5: Problem 21
Identify the force present and explain whether work is being performed in the following cases: (a) You lift a pencil off the top of a desk. (b) A spring is compressed to half its normal length.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose an Olympic diver who weighs \(52.0 \mathrm{~kg}\) executes a straight dive from a 10 -m platform. At the apex of the dive, the diver is \(10.8 \mathrm{~m}\) above the surface of the water. (a) What is the potential energy of the diver at the apex of the dive, relative to the surface of the water? (b) Assuming that all the potential energy of the diver is converted into kinetic energy at the surface of the water, at what speed, in \(\mathrm{m} / \mathrm{s}\), will the diver enter the water? (c) Does the diver do work on entering the water? Explain. 5.93 The air bags that provide protection in automobiles in the event of an accident expand because of a rapid chemical reaction. From the viewpoint of the chemical reactants as the system, what do you expect for the signs of \(q\) and \(w\) in this process?
Without referring to tables, predict which of the following has the higher enthalpy in each case: (a) \(1 \mathrm{~mol} \mathrm{CO}_{2}(s)\) or \(1 \mathrm{~mol} \mathrm{CO} 2(g)\) at the same temperature, (b) \(2 \mathrm{~mol}\) of hydrogen atoms or \(1 \mathrm{~mol}\) of \(\mathrm{H}_{2}\), (c) \(1 \mathrm{~mol} \mathrm{H}_{2}(g)\) and \(0.5 \mathrm{~mol} \mathrm{O}_{2}(g)\) at \(25^{\circ} \mathrm{C}\) or \(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(g)\) at \(25^{\circ} \mathrm{C}\), (d) \(1 \mathrm{~mol} \mathrm{~N}_{2}(g)\) at \(100^{\circ} \mathrm{C}\) or \(1 \mathrm{~mol} \mathrm{~N}_{2}(g)\) at \(300^{\circ} \mathrm{C} .\)
Suppose that the gas-phase reaction \(2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow\) \(2 \mathrm{NO}_{2}(g)\) were carried out in a constant-volume container at constant temperature. (a) Would the measured heat change represent \(\Delta H\) or \(\Delta E\) ? (b) If there is a difference, which quantity is larger for this reaction? (c) Explain your answer to part (b).
(a) What is meant by the term state function? (b) Give an example of a quantity that is a state function and one that is not. (c) Is the volume of a system a state function? Why or why not?
A 200-lh man decides to add to his exercise routine hy walking up three flights of stairs (45 ft) 20 times per day. He figures that the work required to increase his potential energy in this way will permit him to eat an extra order of French fries, at 245 Cal, without adding to his weight. Is he correct in this assumption?
What do you think about this solution?
We value your feedback to improve our textbook solutions.