Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a thermodynamic study a scientist focuses on the properties of a solution in an apparatus as illustrated. A solution is continuously flowing into the apparatus at the top and out at the bottom, such that the amount of solution in the apparatus is constant with time. (a) Is the solution in the apparatus a closed system, open system, or isolated system? Explain your choice. (b) If it is not a closed system, what could be done to make it a closed system?

Short Answer

Expert verified
The solution in the apparatus is an open thermodynamic system, as it exchanges both matter and energy with its surroundings due to the continuous flow of the solution. To make it a closed system, we could close off the inlet and outlet, disconnecting the apparatus from the source and sink of the solution, ensuring no exchange of matter while still allowing energy exchange.

Step by step solution

01

Determine the type of thermodynamic system

To determine the type of thermodynamic system, let's first understand the definitions of each type: 1. Closed System: A system that is capable of exchanging energy (heat and work), but not matter, with its surroundings. 2. Open System: A system that is capable of exchanging both energy (heat and work) and matter with its surroundings. 3. Isolated System: A system that does not exchange any matter or energy with its surroundings. In the given setup, the solution flows continuously into and out of the apparatus. This means the solution in the apparatus is exchanging matter (solution) with its surroundings, making it an open system.
02

Explanation of the open thermodynamic system

Since the solution flows into and out of the apparatus, the apparatus continuously exchanges both matter and energy (such as heat and work) with its surroundings. Consequently, the solution in the apparatus cannot be a closed system (no matter exchange) or an isolated system (no matter or energy exchange). Therefore, the solution in the apparatus is an open thermodynamic system.
03

Making the apparatus a closed system

In order to make the apparatus a closed system, we need to prevent the exchange of matter (in this case, the solution) with the surroundings while still allowing energy exchange. This can be achieved by closing off the inlet and outlet, such that solution no longer flows in or out of the apparatus. By disconnecting the apparatus from the source and sink of the solution, we ensure that the amount of solution in the apparatus remains constant, allowing the system to exchange energy, but not matter, thus converting it into a closed thermodynamic system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following reaction: $$ 2 \mathrm{CH}_{3} \mathrm{OH}(g) \longrightarrow 2 \mathrm{CH}_{4}(g)+\mathrm{O}_{2}(g) \quad \Delta H=+252.8 \mathrm{~kJ} $$ (a) Is this reaction exothermic or endothermic? (b) Calculate the amount of heat transferred when \(24.0 \mathrm{~g}\) of \(\mathrm{CH}_{3} \mathrm{OH}(g)\) is decomposed by this reaction at constant pressure. (c) For a given sample of \(\mathrm{CH}_{3} \mathrm{OH}\), the enthalpy change during the reaction is \(82.1 \mathrm{~kJ}\). How many grams of methane gas are produced? (d) How many kilojoules of heat are released when \(38.5 \mathrm{~g}\) of \(\mathrm{CH}_{4}(g)\) reacts completely with \(\mathrm{O}_{2}(g)\) to form \(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})\) at constant pressure? 5.45 When solutions containing silver ions and chloride ions are mixed, silver chloride precipitates: $$ \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \operatorname{AgCl}(s) \quad \Delta H=-65.5 \mathrm{~kJ} $$ (a) Calculate \(\Delta H\) for the production of \(0.450 \mathrm{~mol}\) of \(\mathrm{AgCl}\) by this reaction. (b) Calculate \(\Delta H\) for the production of \(9.00 \mathrm{~g}\) of \(\mathrm{AgCl}\). (c) Calculate \(\Delta H\) when \(9.25 \times 10^{-4} \mathrm{~mol}\) of \(\mathrm{AgCl}\) dissolves in water.

(a) Under what condition will the enthalpy change of a process equal the amount of heat transferred into or out of the system? (b) During a constant- pressure process, the system releases heat to the surroundings. Does the enthalpy of the system increase or decrease during the process? (c) In a constant-pressure process, \(\Delta H=0\). What can you conclude about \(\Delta E, q\), and \(w\) ?

The standard enthalpies of formation of gaseous propyne \(\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\), propylene \(\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)\), and propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)\) are \(+185.4,+20.4\), and \(-103.8 \mathrm{~kJ} / \mathrm{mol}\), respectively. (a) Calculate the heat evolved per mole on combustion of each substance to yield \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). (b) Calculate the heat evolved on combustion of \(1 \mathrm{~kg}\) of each substance. (c) Which is the most efficient fuel in terms of heat evolved per unit mass?

(a) Why is the change in enthalpy usually easier to measure than the change in internal energy? (b) \(H\) is a state function, but \(q\) is not a state function. Explain. (c) For a given process at constant pressure, \(\Delta H\) is positive. Is the process endothermic or exothermic?

You may have noticed that when you compress the air in a bicycle pump, the body of the pump gets warmer. (a) Assuming the pump and the air in it comprise the system, what is the sign of \(w\) when you compress the air? (b) What is the sign of \(q\) for this process? (c) Based on your answers to parts (a) and (b), can you determine the sign of \(\Delta E\) for compressing the air in the pump? If not, what would you expect for the sign of \(\Delta E\) ? What is your reasoning? [Section 5.2]

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free