Chapter 5: Problem 13
In what two ways can an object possess energy? How do these two ways differ from one another?
Chapter 5: Problem 13
In what two ways can an object possess energy? How do these two ways differ from one another?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) State the first law of thermodynamics. (b) What is meant by the internal energy of a system? (c) By what means can the internal energy of a closed system increase?
Given the data $$ \begin{array}{rr} \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}(g) & \Delta H=+180.7 \mathrm{~kJ} \\ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) & \Delta H=-113.1 \mathrm{~kJ} \\ 2 \mathrm{~N}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H=-163.2 \mathrm{~kJ} \end{array} $$ use Hess's law to calculate \(\Delta H\) for the reaction $$ \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g) \longrightarrow 3 \mathrm{NO}(g) $$
Imagine a book that is falling from a shelf. At a particular moment during its fall, the book has a kinetic energy of \(24 \mathrm{~J}\) and a potential energy with respect to the floor of \(47 \mathrm{~J}\). (a) How do the book's kinetic energy and its potential energy change as it continues to fall? (b) What was the initial potential energy of the book, and what is its total kinetic energy at the instant just before it strikes the floor? (c) If a heavier book fell from the same shelf, would it have the same kinetic energy when it strikes the floor? [Section 5.1]
An aluminum can of a soft drink is placed in a freezer. Later, you find that the can is split open and its contents frozen. Work was done on the can in splitting it open. Where did the energy for this work come from?
Complete combustion of \(1 \mathrm{~mol}\) of acetone \(\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)\) liberates \(1790 \mathrm{~kJ}\) : $$ \begin{aligned} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(l)+4 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+& 3 \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H^{\circ}=-1790 \mathrm{~kJ} \end{aligned} $$ Using this information together with the standard enthalpies of formation of \(\mathrm{O}_{2}(g), \mathrm{CO}_{2}(g)\), and \(\mathrm{H}_{2} \mathrm{O}(l)\) from Appendix \(\mathrm{C}\), calculate the standard enthalpy of formation of acetone.
What do you think about this solution?
We value your feedback to improve our textbook solutions.