Convert given concentrations to moles of I⁻ per liter of solution
For each pair, we need to find the concentration of I⁻ ions in moles per liter. Remember to consider the stoichiometry of the compounds.
### Pair (a) ###
(a) \(0.10\,M\, BaI_{2}\) and \(0.25\,M\, KI\).
For \(BaI_2\), every 1 mole will dissociate into 2 moles of \(I^-\) ions:
\[1\, BaI_2 \rightarrow 1\,Ba^{2+} + 2\,I^-\]
For \(0.10\,M\, BaI_{2}\):
\[0.10\,M\,I^-_{(from\,BaI_2)} = 0.10\,M\, BaI_2 \times 2 = 0.20\,M\]
For \(KI\), every 1 mole will dissociate into 1 mole of \(I^-\) ions:
\[1\, KI \rightarrow 1\,K^+ + 1\,I^-\]
For \(0.25\,M\, KI\):
\[0.25\,M\,I^-_{(from\,KI)} = 0.25\,M\, KI \times 1 = 0.25\,M\]
### Pair (b) ###
(b) \(100\,mL\) of \(0.10\,M\, KI\) solution and \(200\,mL\) of \(0.040\, M\, ZnI_{2}\) solution.
For \(KI\):
\[0.10\,M\,I^{-}_{(from\,KI)} = 0.10\,M\, KI \times 1\]
For \(ZnI_2\):
\[1\, ZnI_{2} \rightarrow 1\, Zn^{2+} + 2\, I^-\]
\[0.040\,M\,I^{-}_{(from\,ZnI_2)} = 0.040\,M\, ZnI_{2} \times 2\]
### Pair (c) ###
(c) \(3.2\,M\) HI solution and a solution made by dissolving \(145\,g\) of NaI in water to make \(150\,mL\) of solution,
For \(HI\):
\[3.2\,M\,I^-_{(from\,HI)} = 3.2\,M\, HI \times 1\]
For NaI, we need to calculate the molarity of NaI and then find I⁻ concentration:
\[M_{NaI} = \frac{n_{NaI}}{V_{solution}}\]
- We first calculate the number of moles of NaI (\(n_{NaI}\)) by dividing the mass (145 g) by its molar mass (149.89 g/mol):
\[n_{NaI} = \frac{145\,g}{149.89\,g/mol} = 0.967\,mol\]
- Next, we convert the volume from mL to L:
\[V_{solution} = 150\,mL \times \frac{1\,L}{1000\,mL} = 0.150\,L\]
- Now, we calculate the molarity of NaI:
\[M_{NaI} = \frac{0.967\,mol}{0.150\,L} = 6.45\,M\]
- Finally, we find the concentration of \(I^-\) ions:
\[6.45\,M\,I^-_{(from\,NaI)} = 6.45\,M\, NaI \times 1\]