Chapter 4: Problem 25
Which ions remain in solution, unreacted, after each of the following pairs of solutions is mixed? (a) potassium carbonate and magnesium sulfate (b) lead nitrate and lithium sulfide (c) ammonium phosphate and calcium chloride
Chapter 4: Problem 25
Which ions remain in solution, unreacted, after each of the following pairs of solutions is mixed? (a) potassium carbonate and magnesium sulfate (b) lead nitrate and lithium sulfide (c) ammonium phosphate and calcium chloride
All the tools & learning materials you need for study success - in one app.
Get started for freeYou are presented with a white solid and told that due to careless labeling it is not clear if the substance is barium chloride, lead chloride, or zinc chloride. When you transfer the solid to a beaker and add water, the solid dissolves to give a clear solution. Next a \(\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)\) solution is added and a white precipitate forms. What is the identity of the unknown white solid? [Section 4.2]
Classify each of the following substances as a nonelectrolyte, weak electrolyte, or strong electrolyte in water: (a) \(\mathrm{H}_{2} \mathrm{SO}_{3}\), (b) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) (ethanol), (c) \(\mathrm{NH}_{3}\), (d) \(\mathrm{KClO}_{3}\), (e) \(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\).
State whether each of the following statements is true or false. Justify your answer in each case. (a) Sulfuric acid is a monoprotic acid. (b) \(\mathrm{HCl}\) is a weak acid. (c) Methanol is a base.
(a) Starting with solid sucrose, \(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\), describe how you would prepare \(250 \mathrm{~mL}\) of a \(0.250 \mathrm{M}\) sucrose solution. (b) Describe how you would prepare \(350.0 \mathrm{~mL}\) of \(0.100 \mathrm{MC}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\) starting with \(3.00 \mathrm{~L}\) of \(1.50 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\).
The U.S. standard for arsenate in drinking water requires that public water supplies must contain no greater than 10 parts per billion ( \(\mathrm{ppb})\) arsenic. If this arsenic is present as arsenate, \(\mathrm{AsO}_{4}{ }^{3-}\), what mass of sodium arsenate would be present in a \(1.00\)-L sample of drinking water that just meets the standard? Parts per billion is defined on a mass basis as $$ \mathrm{ppb}=\frac{\mathrm{g} \text { solute }}{\text { g solution }} \times 10^{9} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.