Chapter 3: Problem 72
(a) Define the terms theoretical yield, actual yield, and percent yield. (b) Why is the actual yield in a reaction almost always less than the theoretical yield? (c) Can a reaction ever have \(110 \%\) actual yield?
Chapter 3: Problem 72
(a) Define the terms theoretical yield, actual yield, and percent yield. (b) Why is the actual yield in a reaction almost always less than the theoretical yield? (c) Can a reaction ever have \(110 \%\) actual yield?
All the tools & learning materials you need for study success - in one app.
Get started for freeVery small crystals composed of 1000 to 100,000 atoms, called quantum dots, are being investigated for use in electronic devices. (a) A quantum dot was made of solid silicon in the shape of a sphere, with a diameter of \(4 \mathrm{~nm}\). Calculate the mass of the quantum dot, using the density of silicon \(\left(2.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\). (b) How many silicon atoms are in the quantum dot? (c) The density of germanium is \(5.325 \mathrm{~g} / \mathrm{cm}^{3}\). If you made a 4-nm quantum dot of germanium, how many Ge atoms would it contain? Assume the dot is spherical.
The allowable concentration level of vinyl chloride, \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}\), in the atmosphere in a chemical plant is \(2.0 \times 10^{-6} \mathrm{~g} / \mathrm{L}\). How many moles of vinyl chloride in each liter does this represent? How many molecules per liter?
Serotonin is a compound that conducts nerve impulses in the brain. It contains \(68.2\) mass percent \(C, 6.86\) mass percent \(H\), \(15.9\) mass percent \(\mathrm{N}\), and \(9.08\) mass percent \(\mathrm{O}\). Its molar mass is \(176 \mathrm{~g} / \mathrm{mol}\). Determine its molecular formula.
When hydrocarbons are burned in a limited amount of air, both \(\mathrm{CO}\) and \(\mathrm{CO}_{2}\) form. When \(0.450 \mathrm{~g}\) of a particular hydrocarbon was burned in air, \(0.467 \mathrm{~g}\) of \(\mathrm{CO}, 0.733 \mathrm{~g}\) of \(\mathrm{CO}_{2}\), and \(0.450 \mathrm{~g}\) of \(\mathrm{H}_{2} \mathrm{O}\) were formed. (a) What is the empirical formula of the compound? (b) How many grams of \(\mathrm{O}_{2}\) were used in the reaction? (c) How many grams would have been required for complete combustion?
Determine the formula weights of each of the following compounds: (a) nitrous oxide, \(\mathrm{N}_{2} \mathrm{O}\), known as laughing gas and used as an anesthetic in dentistry; (b) benzoic acid; \(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\), a substance used as a food preservative; \(\left(\right.\) c) \(\mathrm{Mg}(\mathrm{OH})_{2}\), the active ingredient in milk of magnesia; (d) urea, \(\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\), a compound used as a nitrogen fertilizer; (e) isopentyl acetate, \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{5} \mathrm{H}_{11}\), responsible for the odor of bananas.
What do you think about this solution?
We value your feedback to improve our textbook solutions.