Chapter 3: Problem 30
(a) What is the mass, in grams, of a mole of \({ }^{12} \mathrm{C}\) ? (b) How many carbon atoms are present in a mole of \({ }^{12} \mathrm{C}\) ?
Chapter 3: Problem 30
(a) What is the mass, in grams, of a mole of \({ }^{12} \mathrm{C}\) ? (b) How many carbon atoms are present in a mole of \({ }^{12} \mathrm{C}\) ?
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Define the terms theoretical yield, actual yield, and percent yield. (b) Why is the actual yield in a reaction almost always less than the theoretical yield? (c) Can a reaction ever have \(110 \%\) actual yield?
Hydrogen cyanide, HCN, is a poisonous gas. The lethal dose is approximately \(300 \mathrm{mg} \mathrm{HCN}\) per kilogram of air when inhaled. (a) Calculate the amount of \(\mathrm{HCN}\) that gives the lethal dose in a small laboratory room measuring \(12 \times 15 \times 8.0 \mathrm{ft}\). The density of air at \(26^{\circ} \mathrm{C}\) is \(0.00118 \mathrm{~g} / \mathrm{cm}^{3}\). (b) If the \(\mathrm{HCN}\) is formed by reaction of \(\mathrm{NaCN}\) with an acid such as \(\mathrm{H}_{2} \mathrm{SO}_{4}\), what mass of \(\mathrm{NaCN}\) gives the lethal dose in the room? $$ 2 \mathrm{NaCN}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{HCN}(g) $$ (c) HCN forms when synthetic fibers containing Orlon or Acrilan" burn. Acrilan" has an empirical formula of \(\mathrm{CH}_{2} \mathrm{CHCN}\), so \(\mathrm{HCN}\) is \(50.9 \%\) of the formula by mass. A rug measures \(12 \times 15 \mathrm{ft}\) and contains \(30 \mathrm{oz}\) of Acrilan \({ }^{\circ}\) fibers per square yard of carpet. If the rug burns, will a lethal dose of HCN be generated in the room? Assume that the yield of HCN from the fibers is \(20 \%\) and that the carpet is \(50 \%\) consumed.
Determine the formula weights of each of the following compounds: (a) nitric acid, \(\mathrm{HNO}_{3} ;\) (b) \(\mathrm{KMnO}_{4} ;\) (c) \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\); (d) quartz, \(\mathrm{SiO}_{2} ;\) (e) gallium sulfide, (f) chromium(III) sulfate, (g) phosphorus trichloride.
Hydrofluoric acid, HF \((a q)\), cannot be stored in glass bottles because compounds called silicates in the glass are attacked by the \(\mathrm{HF}(a q)\). Sodium silicate \(\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)\), for example, reacts as follows: $$ \mathrm{Na}_{2} \mathrm{SiO}_{3}(s)+8 \mathrm{HF}(a q) \longrightarrow(a q)+2 \mathrm{NaF}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l) $$ (a) How many moles of HF are needed to react with \(0.300 \mathrm{~mol}\) of \(\mathrm{Na}_{2} \mathrm{SiO}_{3}\) ? (b) How many grams of NaF form when \(0.500 \mathrm{~mol}\) of HF reacts with excess \(\mathrm{Na}_{2} \mathrm{SiO}_{3}\) ? (c) How many grams of \(\mathrm{Na}_{2} \mathrm{SiO}_{3}\) can react with \(0.800 \mathrm{~g}\) of \(\mathrm{HF}\) ?
Solutions of sulfuric acid and lead(II) acetate react to form solid lead(II) sulfate and a solution of acetic acid. If \(5.00 \mathrm{~g}\) of sulfuric acid and \(5.00 \mathrm{~g}\) of lead(II) acetate are mixed, calculate the number of grams of sulfuric acid, lead(II) acetate, lead(II) sulfate, and acetic acid present in the mixture after the reaction is complete.
What do you think about this solution?
We value your feedback to improve our textbook solutions.