Chapter 22: Problem 31
Why does xenon form stable compounds with fluorine, whereas argon does not?
Chapter 22: Problem 31
Why does xenon form stable compounds with fluorine, whereas argon does not?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn aqueous solution of \(\mathrm{SO}_{2}\) reduces (a) aqueous \(\mathrm{KMnO}_{4}\) to \(\mathrm{MnSO}_{4}(a q)\), (b) acidic aqueous \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) to aqueous \(\mathrm{Cr}^{3+}\), (c) aqueous \(\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}\) to mercury metal. Write balanced equations for these reactions.
Explain each of the following observations: (a) At room temperature \(\mathrm{I}_{2}\) is a solid, \(\mathrm{Br}_{2}\) is a liquid, and \(\mathrm{Cl}_{2}\) and \(\mathrm{F}_{2}\) are both gases. (b) \(\mathrm{F}_{2}\) cannot be prepared by electrolytic oxidation of aqueous \(\mathrm{F}^{-}\) solutions. (c) The boiling point of HF is much higher than those of the other hydrogen halides. (d) The halogens decrease in oxidizing power in the order \(\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}\).
Write the chemical formula for each of the following compounds, and indicate the oxidation state of the halogen or noble-gas atom in each: (a) chlorate ion, (b) hydroiodic acid, (c) iodine trichloride, (d) sodium hypochlorite, (e) perchloric acid, (f) xenon tetrafluoride.
Account for the following observations: (a) Phosphorus forms a pentachloride, but nitrogen does not. (b) \(\mathrm{H}_{3} \mathrm{PO}_{2}\) is a monoprotic acid. (c) Phosphonium salts, such as \(\mathrm{PH}_{4} \mathrm{Cl}\), can be formed under anhydrous conditions, but they cannot be made in aqueous solution. (d) White phosphorus is more reactive than red phosphorus.
Give the chemical formula for (a) hydrocyanic acid, (b) nickel tetracarbonyl, (c) barium bicarbonate, (d) calcium acetylide, (e) potassium carbonate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.