Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Indicate whether each of the following statements is true or false: (a) If something is reduced, it is formally losing electrons. (b) A reducing agent gets oxidized as it reacts. (c) An oxidizing agent is needed to convert \(\mathrm{CO}\) into \(\mathrm{CO}_{2}\).

Short Answer

Expert verified
(a) False: Reduction refers to the process of gaining electrons, not losing them. (b) True: A reducing agent causes another substance to be reduced and itself gets oxidized in the process. (c) True: An oxidizing agent is needed to provide the additional oxygen atom needed to convert CO into CO2.

Step by step solution

01

Statement A: If something is reduced, it is formally losing electrons.

This statement is false. Reduction actually refers to the process of gaining electrons, not losing them. It is when a substance reduces its oxidation state by gaining electrons.
02

Statement B: A reducing agent gets oxidized as it reacts.

This statement is true. A reducing agent is a substance that causes another substance to be reduced and itself gets oxidized in the process. By losing electrons, the reducing agent makes it possible for the other substance to gain those electrons and be reduced.
03

Statement C: An oxidizing agent is needed to convert CO into CO2.

This statement is true. When carbon monoxide (CO) is converted into carbon dioxide (CO2), oxidation occurs. This means that CO must be gaining oxygen, in this case, by reacting with an oxidizing agent. An oxidizing agent is needed to provide the additional oxygen atom needed to convert CO into CO2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

During the discharge of an alkaline battery, \(4.50 \mathrm{~g}\) of \(\mathrm{Zn}\) is consumed at the anode of the battery. (a) What mass of \(\mathrm{MnO}_{2}\) is reduced at the cathode during this discharge? (b) How many coulombs of electrical charge are transferred from \(\mathrm{Zn}\) to \(\mathrm{MnO}_{2}\) ?

(a) In the Nernst equation what is the numerical value of the reaction quotient, \(Q\), under standard conditions? (b) Can the Nernst equation be used at temperatures other than room temperature?

(a) Calculate the mass of Li formed by electrolysis of molten Li.i by a current of \(7.5 \times 10^{4}\) A flowing for a period of \(24 \mathrm{~h}\). Assume the electrolytic cell is \(85 \%\) efficient. (b) What is the minimum voltage required to drive the reaction?

(a) Assuming standard conditions, arrange the following in order of increasing strength as oxidizing agents in acidic solution: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}^{2+}, \mathrm{C}_{2}, \mathrm{O}_{2}\) (b) Arrange the following in order of increasing strength as reducing agents in acidic solution: \(\mathrm{Zn}, \mathrm{I}^{-}, \mathrm{Sn}^{2+}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AL}\). 20.48 Based on the data in Appendix E, (a) which of the following is the strongest oxidizing agent and which is the weakest in acidic solution: \(\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Zn}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} ?\) (b) Which of the following is the strongest reducing agent, and which is the weaket in acidic solution: \(\mathrm{F}^{-}, \mathrm{Zn}, \mathrm{N}_{1}{ }^{+}\), \(\mathrm{I}_{\mathrm{n}} \mathrm{NO}\) ?

The Haber process is the principal industrial route for converting nitrogen into ammonia: $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) $$ (a) What is being oxidized, and what is being reduced? (b) Using the thermodynamic data in Appendix \(\mathrm{C}\), calculate the equilibrium constant for the process at room temperature. (c) Calculate the standard emf of the Haber process at room temperature.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free