Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term oxidation? (b) On which side of an oxidation half-reaction do the electrons appear? (c) What is meant by the term oxidant? (d) What is meant by the term oxidizing agent?

Short Answer

Expert verified
(a) Oxidation refers to a chemical reaction where an atom or molecule loses electrons, increasing its oxidation state. This is often associated with the addition of oxygen or removal of hydrogen. (b) In an oxidation half-reaction, electrons appear on the right side, as they are lost by the species being oxidized. (c) An oxidant, or oxidizing agent, is a substance that gains electrons from another species, causing that species to be oxidized. The oxidant itself is reduced in the process, as it accepts the electrons and decreases its oxidation state.

Step by step solution

01

(a) Define oxidation

Oxidation is a chemical reaction in which an atom or molecule loses one or more electrons, which leads to an increase in its oxidation state. This process is often associated with the addition of oxygen to a compound or the removal of hydrogen.
02

(b) Identify side of the oxidation half-reaction with electrons

In an oxidation half-reaction, the electrons appear on the right side of the equation. This is because, in an oxidation process, electrons are lost by the species being oxidized, so they will be written as products in the equation.
03

(c) Define oxidant

An oxidant, also known as an oxidizing agent or oxidizer, is a substance that has the ability to accept or gain electrons from another species, causing the other species to be oxidized. In other words, an oxidant is the species responsible for the oxidation process in a redox reaction.
04

(d) Explain the term oxidizing agent

The term oxidizing agent refers to the same concept as an oxidant. An oxidizing agent is a substance that gains electrons from another species, causing that species to be oxidized. The oxidizing agent itself is reduced in the process, as it accepts the electrons and decreases its oxidation state.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In some applications nickel-cadmium batteries have been replaced by nickel- zine batteries. The overall cell reaction for this relatively new battery is: $$ \begin{aligned} 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{NiO}(\mathrm{OH})(s)+\mathrm{Zn}(s) \\\ \longrightarrow 2 \mathrm{Ni}(\mathrm{OH})_{2}(s)+\mathrm{Zn}(\mathrm{OH})_{2}(s) \end{aligned} $$ (a)What is the cathode half-reaction? (b) What is the anode half-reaction? (c) A single nickel-cadmium cell has a voltage of \(1.30 \mathrm{~V}\). Based on the difference in the standard reduction potentials of \(\mathrm{Cd}^{2+}\) and \(\mathrm{Zn}^{2+}\), what voltage would you estimate a nickel-zinc battery will produce? (d) Would you expect the specific energy density of a nickel-zinc battery to be higher or lower than that of a nickel-cadmium battery?

(a) In the Nernst equation what is the numerical value of the reaction quotient, \(Q\), under standard conditions? (b) Can the Nernst equation be used at temperatures other than room temperature?

For a spontaneous reaction \(\mathrm{A}(a q)+\mathrm{B}(a q) \longrightarrow \mathrm{A}^{-}(a q)+\) \(\mathrm{B}^{+}(\mathrm{at})\), answer the following questions: (a) If you made a voltaic cell out of this reaction, what halfreaction would be occurring at the cathode, and what halfreaction would be occurring at the anode? (b) Which half-reaction from (a) is higher in potential energy? (c) What is the sign of \(E_{\text {cell? }}^{\text {? }}\) [Section 20.3]

In each of the following balanced oxidation-reduction equations, identify those elements that undergo changes in oxidation number and indicate the magnitude of the change in each case. (a) \(\mathrm{I}_{2} \mathrm{O}_{\mathrm{s}}(s)+5 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{I}_{2}(s)+5 \mathrm{CO}_{2}(\mathrm{~g})\) (b) \(2 \mathrm{Hg}^{2+}(a q)+\mathrm{N}_{2} \mathrm{H}_{4}(a q) \longrightarrow 2 \mathrm{Hg}(l)+\mathrm{N}_{2}(g)+4 \mathrm{H}^{+}(a q)\) (c) \(3 \mathrm{H}_{2} \mathrm{~S}(a q)+2 \mathrm{H}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \longrightarrow 3 \mathrm{~S}(s)+\) \(2 \mathrm{NO}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)\)

A voltaic cell is constructed that uses the following half-cell reactions: $$ \begin{aligned} \mathrm{Cu}^{*}(a q)+\mathrm{e}^{-} & \longrightarrow \mathrm{Cu}(s) \\ \mathrm{l}_{2}(s)+2 \mathrm{c}^{-} & \longrightarrow 2 \mathrm{I}^{-}(a q) \end{aligned} $$ The cell is operated at \(298 \mathrm{~K}\) with \(\left[\mathrm{Cu}^{+}\right]=0.25 \mathrm{M}\) and \(\left[1^{-}\right]=3.5 \mathrm{M}\). (a) Determine \(E\) for the cell at these concentrations. (b) Which electrode is the anode of the cell? (c) Is the answer to part (b) the same as it would be if the cell were operated under standard conditions? (d) If \(\left[\mathrm{Cu}^{+}\right]\)were equal to \(0.15 \mathrm{M}\), at what concentration of I \({ }^{-}\)would the cell have zero potential?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free