Chapter 15: Problem 94
Silver chloride, \(\mathrm{AgCl}(\mathrm{s})\), is an "insoluble" strong electrolyte. (a) Write the equation for the dissolution of \(\mathrm{AgCl}(s)\) in \(\mathrm{H}_{2} \mathrm{O}(l)\). (b) Write the expression for \(K_{c}\) for the reaction in part (a). (c) Based on the thermochemical data in Appendix \(C\) and Le Châtelier's principle, predict whether the solubility of \(\mathrm{AgCl}\) in \(\mathrm{H}_{2} \mathrm{O}\) increases or decreases with increasing temperature. (d) The equilibrium constant for the dissolution of \(\mathrm{AgCl}\) in water is \(1.6 \times 10^{-10}\) at \(25^{\circ} \mathrm{C}\). In addition, \(\mathrm{Ag}^{+}(a q)\) can react with \(\mathrm{Cl}^{-}(a q)\) according to the reaction $$ \mathrm{Ag}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AgCl}_{2}^{-}(a q) $$ where \(K_{c}=1.8 \times 10^{5}\) at \(25^{\circ} \mathrm{C}\). Although \(\mathrm{AgCl}\) is "not soluble" in water, the complex \(\mathrm{AgCl}_{2}{ }^{\prime}\) is soluble. At \(25^{\circ} \mathrm{C}\), is the solubility of \(\mathrm{AgCl}\) in a \(0.100 \mathrm{M} \mathrm{NaCl}\) solution greater than the solubility of \(\mathrm{AgCl}\) in pure water, due to the formation of soluble \(\mathrm{AgCl}_{2}^{-}\)ions? Or is the \(\mathrm{AgCl}\) solubility in \(0.100 \mathrm{M} \mathrm{NaCl}\) less than in pure water because of a Le Châtelier-type argument? Justify your answer with calculations. (Hint: Any form in which silver is in solution counts as "solubility.")
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.