Chapter 15: Problem 72
When \(2.00 \mathrm{~mol}\) of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) is placed in a 2.00- \(\mathrm{L}\) flask at \(303 \mathrm{~K}\), \(56 \%\) of the \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) decomposes to \(\mathrm{SO}_{2}\) and \(\mathrm{Cl}_{2}\) : $$ \mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g) $$ (a) Calculate \(K_{c}\) for this reaction at this temperature. (b) Calculate \(K_{p}\) for this reaction at \(303 \mathrm{~K}\). (c) According to Le Châtelier's principle, would the percent of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) that decomposes increase, decrease or stay the same if the mixture were transferred to a \(15.00\)-L vessel? (d) Use the equilibrium constant you calculated above to determine the percentage of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) that decomposes when \(2.00 \mathrm{~mol}\) of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) is placed in a \(15.00\) - \(\mathrm{L}\) vessel at \(303 \mathrm{~K}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.