Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write the expressions for \(K_{c}\) for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous. (a) \(2 \mathrm{O}_{3}(g) \rightleftharpoons 3 \mathrm{O}_{2}(g)\) (b) \(\mathrm{Ti}(s)+2 \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{TiCl}_{4}(l)\) (c) \(2 \mathrm{C}_{2} \mathrm{H}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+\mathrm{O}_{2}(g)\) (d) \(\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(g)\) (e) \(4 \mathrm{HCl}(a q)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cl}_{2}(g)\) (f) \(2 \mathrm{C}_{8} \mathrm{H}_{\mathrm{t}}(l)+25 \mathrm{O}_{2}(g) \rightleftharpoons 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)\) (g) \(2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \rightleftharpoons 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(l)\)

Short Answer

Expert verified
The equilibrium constant expressions for the given reactions are: (a) Homogeneous reaction: \(K_c = \frac{[\mathrm{O}_2]^3}{[\mathrm{O}_3]^2}\) (b) Heterogeneous reaction: \(K_c = [\mathrm{Cl}_2]^2\) (c) Homogeneous reaction: \(K_c = \frac{[\mathrm{C}_2\mathrm{H}_6]^2[\mathrm{O}_2]}{[\mathrm{C}_2\mathrm{H}_4]^2[\mathrm{H}_2\mathrm{O}]^2}\) (d) Heterogeneous reaction: \(K_c = \frac{[\mathrm{CH}_4]}{[\mathrm{H}_2]^2}\) (e) Heterogeneous reaction: \(K_c = \frac{[\mathrm{Cl}_2]^2}{[\mathrm{HCl}]^4[\mathrm{O}_2]}\) (f) Heterogeneous reaction: \(K_c = \frac{[\mathrm{CO}_2]^ {16} [\mathrm{H}_2\mathrm{O}]^{18}}{[\mathrm{O}_2]^{25}}\) (g) Heterogeneous reaction: \(K_c = \frac{[\mathrm{CO}_2]^{16}}{[\mathrm{O}_2]^{25}}\)

Step by step solution

01

Equilibrium Constant Expression

The reaction is homogeneous since both reactants and products are gases. The equilibrium constant expression is: \[K_c = \frac{[\mathrm{O}_2]^3}{[\mathrm{O}_3]^2}\] (b) \(\mathrm{Ti}(s)+2 \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{TiCl}_{4}(l)\)
02

Equilibrium Constant Expression

The reaction is heterogeneous since the reactants and products are in different phases. The equilibrium constant expression excludes solids and liquids, so it is: \[K_c = [\mathrm{Cl}_2]^2\] (c) \(2 \mathrm{C}_{2} \mathrm{H}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+\mathrm{O}_{2}(g)\)
03

Equilibrium Constant Expression

The reaction is homogeneous since all reactants and products are gases. The equilibrium constant expression is: \[K_c = \frac{[\mathrm{C}_2\mathrm{H}_6]^2[\mathrm{O}_2]}{[\mathrm{C}_2\mathrm{H}_4]^2[\mathrm{H}_2\mathrm{O}]^2}\] (d) \(\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{CH}_{4}(g)\)
04

Equilibrium Constant Expression

The reaction is heterogeneous since the reactants and products are in different phases. The equilibrium constant expression excludes solids, so it is: \[K_c = \frac{[\mathrm{CH}_4]}{[\mathrm{H}_2]^2}\] (e) \(4 \mathrm{HCl}(a q)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cl}_{2}(g)\)
05

Equilibrium Constant Expression

The reaction is heterogeneous since the reactants and products are in different phases. The equilibrium constant expression includes only the gases and aqueous substances: \[K_c = \frac{[\mathrm{Cl}_2]^2}{[\mathrm{HCl}]^4[\mathrm{O}_2]}\] (f) \(2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \rightleftharpoons 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)\)
06

Equilibrium Constant Expression

The reaction is heterogeneous since the reactants and products are in different phases. The equilibrium constant expression includes only gases: \[K_c = \frac{[\mathrm{CO}_2]^ {16} [\mathrm{H}_2\mathrm{O}]^{18}}{[\mathrm{O}_2]^{25}}\] (g) \(2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \rightleftharpoons 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(l)\)
07

Equilibrium Constant Expression

The reaction is heterogeneous since the reactants and products are in different phases. The equilibrium constant expression includes only gases: \[K_c = \frac{[\mathrm{CO}_2]^{16}}{[\mathrm{O}_2]^{25}}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Homogeneous Reaction
A homogeneous reaction involves reactants and products that exist in the same phase of matter, usually gases or solutions. An example is the reaction between ozone (O3) and oxygen (O2), both in the gaseous state, which can be represented as 2 O3(g) ⇌ 3 O2(g).

In this case, we can write the equilibrium constant expression, Kc, by using the concentrations of the gases. As both reactants and products are in the same phase, all of them are included in the expression. For the given reaction, the equilibrium constant expression is \[K_c = \frac{[\mathrm{O}_2]^3}{[\mathrm{O}_3]^2}\].

Understanding homogeneous reactions is important because the behavior of the reaction can be more straightforward to predict as all species interact in a single phase. This simplification makes calculations and conceptual understanding of the reaction's dynamics easier.
Heterogeneous Reaction
On the flip side, a heterogeneous reaction involves substances in different phases, such as gases, liquids, or solids. For instance, the formation of titanium tetrachloride from titanium solid and chlorine gas, Ti(s) + 2 Cl2(g) ⇌ TiCl4(l), is a heterogeneous reaction.

When writing the equilibrium constant expression for a heterogeneous reaction, we include only the concentrations of the reactants and products that are in gases or dissolved in solution (aqueous). Solids and liquids are omitted because their concentrations do not change during the reaction. Thus, for this reaction, the expression is \[K_c = [\mathrm{Cl}_2]^2\].

This simplification assumes that the activity of pure solids and liquids is constant and therefore, they do not affect the equilibrium state of the reaction. Understanding this concept is crucial for accurately predicting the progress of a reaction involving different phases.
Chemical Equilibrium
The state of chemical equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction, resulting in no net change in the amount of reactants and products. At equilibrium, the concentration of all reactants and products remains constant, though they are not necessarily equal.

For every reversible reaction at equilibrium, we can write an equilibrium constant expression, Kc, which helps in understanding the extent to which a reaction proceeds under given conditions. This expression is a ratio of the concentration of products raised to their stoichiometric coefficients to the concentration of reactants raised to their stoichiometric coefficients. For example, in the synthesis of ethane from ethylene and water vapor, the equilibrium constant expression is \[K_c = \frac{[\mathrm{C}_2\mathrm{H}_6]^2[\mathrm{O}_2]}{[\mathrm{C}_2\mathrm{H}_4]^2[\mathrm{H}_2\mathrm{O}]^2}\].

Grasping this balance is essential for controlling reactions, such as in industrial processes where optimizing yield is vital.
Phases of Matter
Chemical reactions occur in and across different phases of matter: solids, liquids, gases, and plasma. The phase of each reactant and product affects the reaction rate, the form of the equilibrium constant, and the overall thermodynamics.

For example, in the reaction of liquid octane and oxygen gas to form carbon dioxide gas and liquid water, 2 C8H18(l) + 25 O2(g) ⇌ 16 CO2(g) + 18 H2O(l), both liquid and gaseous phases are involved. The equilibrium constant includes only the concentrations of the gases. Phases of matter are vital for predicting the outcome of a reaction, understanding the nature of reactants and products, and during the separation and purification of chemical compounds.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A mixture of \(1.374 \mathrm{~g}\) of \(\mathrm{H}_{2}\) and \(70.31 \mathrm{~g}\) of \(\mathrm{Br}_{2}\) is heated in a \(2.00\)-L vessel at \(700 \mathrm{~K}\). These substances react according to $$ \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{HBr}(g) $$ At equilibrium, the vessel is found to contain \(0.566 \mathrm{~g}\) of \(\mathrm{H}_{2}\). (a) Calculate the equilibrium concentrations of \(\mathrm{H}_{2}, \mathrm{Br}_{2}\), and \(\mathrm{HBr}\). (b) Calculate \(K_{\text {. }}\).

Consider the reaction $$ \mathrm{CaSO}_{4}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) $$ At \(25^{\circ} \mathrm{C}\), the equilibrium constant is \(K_{c}=2.4 \times 10^{-5}\) for this reaction. (a) If excess \(\mathrm{CaSO}_{4}(s)\) is mixed with water at \(25^{\circ} \mathrm{C}\) to produce a saturated solution of \(\mathrm{CaSO}_{4}\), what are the equilibrium concentrations of \(\mathrm{Ca}^{2+}\) and \(\mathrm{SO}_{4}^{2-}\) ? (b) If the resulting solution has a volume of \(1.4 \mathrm{~L}\), what is the minimum mass of \(\mathrm{CaSO}_{4}(s)\) needed to achieve equilibrium?

Write the expression for \(K_{c}\) for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous. (a) \(3 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g)\) (b) \(\mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons \mathrm{CS}_{2}(g)+4 \mathrm{H}_{2}(g)\) (c) \(\mathrm{Ni}(\mathrm{CO})_{4}(g) \rightleftharpoons \mathrm{Ni}(s)+4 \mathrm{CO}(g)\) (d) \(\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}(a q)\) (e) \(2 \mathrm{Ag}(s)+\mathrm{Zn}^{2+}(a q) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{Zn}(s)\) (f) \(\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)\) (g) \(2 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+2 \mathrm{OH}(a q)\)

Consider the reaction \(\mathrm{IO}_{4}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{4} \mathrm{IO}_{6}{ }^{-}(a q)\); \(K_{c}=3.5 \times 10^{-2}\). If you start with \(25.0 \mathrm{~mL}\) of a \(0.905 \mathrm{M}\) solution of \(\mathrm{NaIO}_{4}\), and then dilute it with water to \(500.0 \mathrm{~mL}\), what is the concentration of \(\mathrm{H}_{4} \mathrm{IO}_{6}{ }^{-}\)at equilibrium?

(a) If \(Q_{c}>K_{c}\), how must the reaction proceed to reach equilibrium? (b) At the start of a certain reaction, only reactants are present; no products have been formed. What is the value of \(Q_{c}\) at this point in the reaction?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free