Chapter 15: Problem 100
The protein hemoglobin (Hb) transports \(\mathrm{O}_{2}\) in mammalian blood. Each \(\mathrm{Hb}\) can bind \(4 \mathrm{O}_{2}\) molecules. The equilibrium constant for the \(\mathrm{O}_{2}\) binding reaction is higher in fetal hemoglobin than in adult hemoglobin. In discussing protein oxygen-binding capacity, biochemists use a measure called the P50 value, defined as the partial pressure of oxygen at which \(50 \%\) of the protein is saturated. Fetal hemoglobin has a P50 value of 19 torr, and adult hemoglobin has a P50 value of \(26.8\) torr. Use these data to estimate how much larger \(K_{c}\) is for the aqueous reaction \(4 \mathrm{O}_{2}(g)+\mathrm{Hb}(a q) \longrightarrow\) \(\left[\mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4}(a q)\right] .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.