Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is a catalyst? (b) What is the difference between a homogeneous and a heterogeneous catalyst? (c) Do catalysts affect the overall enthalpy change for a reaction, the activation energy, or both?

Short Answer

Expert verified
(a) A catalyst is a substance that increases the rate of a chemical reaction by lowering the activation energy, without undergoing any permanent chemical change. (b) Homogeneous catalysts are in the same phase as the reactants, while heterogeneous catalysts are in a different phase. Homogeneous catalysts generally allow for faster reactions but are harder to separate, while heterogeneous catalysts are easier to separate and more suited for large-scale applications. (c) Catalysts only affect the activation energy of a reaction, not the overall enthalpy change, allowing the reaction to proceed faster and at lower temperatures while the overall energy difference between reactants and products remains unchanged.

Step by step solution

01

Definition of a catalyst

A catalyst is a substance that increases the rate of a chemical reaction by lowering the activation energy. Importantly, a catalyst remains chemically unchanged after the reaction and can be reused multiple times.
02

Homogeneous vs. heterogeneous catalysts

The main difference between homogeneous and heterogeneous catalysts lies in their phase relative to the reactants. A homogeneous catalyst is in the same phase (solid, liquid, or gas) as the reactants, while a heterogeneous catalyst is in a different phase. Generally, homogeneous catalysts are more effective in accelerating reactions, as their particles can easily interact with the reactants. However, heterogeneous catalysts are often easier to separate from the reaction mixture and can be more practical for large-scale applications.
03

Catalysts' effect on enthalpy change and activation energy

Catalysts only affect the activation energy of a reaction, not the overall enthalpy change. By lowering the activation energy, catalysts enable the reaction to proceed faster and at lower temperatures. However, the overall enthalpy change for the reaction remains unchanged, as it is determined by the difference in energy between the reactants and products, which is independent of the catalyst's presence.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Americium-241 is used in smoke detectors. It has a first-order rate constant for radioactive decay of \(k=1.6 \times 10^{-3} \mathrm{yr}^{-1}\). By contrast, iodine-125, which is used to test for thyroid functioning, has a rate constant for radioactive decay of \(k=0.011\) day \(^{-1}\). (a) What are the half-lives of these two isotopes? (b) Which one decays at a faster rate? (c) How much of a \(1.00\)-mg sample of each isotope remains after 3 half-lives? (d) How much of a 1.00-mg sample of each isotope remains after 4 days?

For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product and disappearance of each reactant: (a) \(2 \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)\) (b) \(2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{SO}_{3}(g)\) (c) \(2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)\) (d) \(\mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(g)\)

Cyclopentadiene \(\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)\) reacts with itself to form dicyclopentadiene $\left(\mathrm{C}_{10} \mathrm{H}_{12}\right)\(. A \)0.0400 \mathrm{M}\( solution of \)\mathrm{C}_{5} \mathrm{H}_{6}$ was monitored as a function of time as the reaction $2 \mathrm{C}_{5} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{10} \mathrm{H}_{12}$ proceeded. The following data were collected: $$ \begin{array}{cc} \hline \text { Time (s) } & {\left[\mathrm{C}_{5} \mathrm{H}_{6}\right](M)} \\\ \hline 0.0 & 0.0400 \\ 50.0 & 0.0300 \\ 100.0 & 0.0240 \\ 150.0 & 0.0200 \\ 200.0 & 0.0174 \\ \hline \end{array} $$ Plot \(\left[\mathrm{C}_{5} \mathrm{H}_{6}\right]\) versus time, $\ln \left[\mathrm{C}_{5} \mathrm{H}_{6}\right]\( versus time, and \)1 /\left[\mathrm{C}_{5} \mathrm{H}_{6}\right]$ versus time. (a) What is the order of the reaction? (b) What is the value of the rate constant?

Platinum nanoparticles of diameter \(\sim 2 \mathrm{~nm}\) are important catalysts in carbon monoxide oxidation to carbon dioxide. Platinum crystallizes in a face-centered cubic arrangement with an edge length of \(3.924 \AA\). (a) Estimate how many platinum atoms would fit into a \(2.0-\mathrm{nm}\) sphere; the volume of a sphere is \((4 / 3) \pi r^{3}\). Recall that \(1 \dot{A}=1 \times 10^{-10} \mathrm{~m}\) and \(1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\). (b) Estimate how many platinum atoms are on the surface of a \(2.0\)-nm Pt sphere, using the surface area of a sphere \(\left(4 \pi r^{2}\right)\) and assuming that the "footprint" of one Pt atom can be estimated from its atomic diameter of \(2.8 \mathrm{~A}\). (c) Using your results from (a) and (b), calculate the percentage of \(\mathrm{Pt}\) atoms that are on the surface of a \(2.0-\mathrm{nm}\) nanoparticle. (d) Repeat these calculations for a \(5.0\)-nm platinum nanoparticle. (e) Which size of nanoparticle would you expect to be more catalytically active and why?

The following is a quote from an article in the August 18, 1998 , issue of The New York Times about the breakdown of cellulose and starch: "A drop of 18 degrees Fahrenheit [from \(77^{\circ} \mathrm{F}\) to \(59^{\circ} \mathrm{F}\) ] lowers the reaction rate six times; a 36-degree drop [from \(77^{\circ} \mathrm{F}\) to \(41^{\circ} \mathrm{F}\) ] produces a fortyfold decrease in the rate." (a) Calculate activation energies for the breakdown process based on the two estimates of the effect of temperature on rate. Are the values consistent? (b) Assuming the value of \(E_{a}\) calculated from the \(36^{\circ}\) drop and that the rate of breakdown is first order with a half-life at \(25^{\circ} \mathrm{C}\) of \(2.7 \mathrm{yr}\), calculate the half-life for breakdown at a temperature of \(-15^{\circ} \mathrm{C}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free