Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One of the many remarkable enzymes in the human body is carbonic anhydrase, which catalyzes the interconversion of carbon dioxide and water with bicarbonate ion and protons. If it were not for this enzyme, the body could not rid itself rapidly enough of the \(\mathrm{CO}_{2}\) accumulated by cell metabolism. The enzyme catalyzes the dehydration (release to air) of up to \(10^{7} \mathrm{CO}_{2}\) molecules per second. Which components of this description correspond to the terms enzyme, substrate, and turnover number?

Short Answer

Expert verified
In the given description, the enzyme is "carbonic anhydrase", which acts on substrates carbon dioxide (CO₂) and water (H₂O) to produce bicarbonate ion (HCO₃⁻) and protons (H⁺). The turnover number is the number of CO₂ molecules processed per second, which is \(10^7\).

Step by step solution

01

Identify the enzyme

In the given description, the enzyme is mentioned as "carbonic anhydrase." It catalyzes the interconversion of carbon dioxide and water with bicarbonate ion and protons.
02

Identify the substrates

The substrates in the given description are the molecules that the enzyme carbonic anhydrase acts upon. In this case, carbon dioxide (CO₂) and water (H₂O) are the substrates, which are converted to bicarbonate ion (HCO₃⁻) and protons (H⁺) in the presence of carbonic anhydrase.
03

Identify the turnover number

The turnover number is stated in the description as the number of CO₂ molecules processed per second by the carbonic anhydrase enzyme. It is given that the enzyme catalyzes the dehydration of up to \(10^7\) CO₂ molecules per second. Therefore, the turnover number is \(10^7\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Indicate whether each statement is true or false. (a) If you measure the rate constant for a reaction at different temperatures, you can calculate the overall enthalpy change for the reaction. (b) Exothermic reactions are faster than endothermic reactions. (c) If you double the temperature for a reaction, you cut the activation energy in half.

(a) The activation energy for the isomerization of methyl isonitrile (Figure 14.7) is \(160 \mathrm{~kJ} / \mathrm{mol}\). Calculate the fraction of methyl isonitrile molecules that has an energy of \(160.0 \mathrm{~kJ}\) or greater at \(500 \mathrm{~K}\). (b) Calculate this fraction for a temperature of \(520 \mathrm{~K}\). What is the ratio of the fraction at \(520 \mathrm{~K}\) to that at \(500 \mathrm{~K} ?\)

The following mechanism has been proposed for the reaction of NO with \(\mathrm{H}_{2}\) to form \(\mathrm{N}_{2} \mathrm{O}\) and $\mathrm{H}_{2} \mathrm{O} :$ $$\mathrm{NO}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{2}(g)$ $\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$$ (a) Show that the elementary reactions of the proposed mechanism add to provide a balanced equation for the reaction. (b) Write a rate law for each elementary reaction in the mechanism. (c) Identify any intermediates in the mechanism. (d) The observed rate law is rate \(=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]\) . If the proposed mechanism is correct, what can we conclude about the relative speeds of the first and second reactions?

(a) The reaction \(\mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)\) is first order. Near room temperature, the rate constant equals \(7.0 \times 10^{-4} \mathrm{~s}^{-1}\). Calculate the half-life at this temperature. (b) At \(415^{\circ} \mathrm{C},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\) decomposes in the gas phase, \(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}(g) \longrightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g)\). If the reaction is first order with a half-life of \(56.3 \mathrm{~min}\) at this temperature, calculate the rate constant in \(\mathrm{s}^{-1}\).

The accompanying graph shows plots of \(\ln k\) versus \(1 / T\) for two different reactions. The plots have been extrapolated to the \(y\)-intercepts. Which reaction (red or blue) has (a) the larger value for \(E_{a}\) and (b) the larger value for the frequency factor, \(A\) ? [Section 14.5]

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free