Chapter 13: Problem 95
Glucose makes up about \(0.10 \%\) by mass of human blood. Calculate this concentration in (a) ppm, (b) molality. (c) What further information would you need to determine the molarity of the solution?
Chapter 13: Problem 95
Glucose makes up about \(0.10 \%\) by mass of human blood. Calculate this concentration in (a) ppm, (b) molality. (c) What further information would you need to determine the molarity of the solution?
All the tools & learning materials you need for study success - in one app.
Get started for freeDescribe how you would prepare each of the following aqueous solutions: (a) \(1.50 \mathrm{~L}\) of \(0.110 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\) solution, starting with solid \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\); (b) \(225 \mathrm{~g}\) of a solution that is \(0.65 \mathrm{~m}\) in \(\mathrm{Na}_{2} \mathrm{CO}_{3}\), starting with the solid solute; (c) \(1.20 \mathrm{~L}\) of a solution that is \(15.0 \% \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\) by mass (the density of the solution is \(1.16 \mathrm{~g} / \mathrm{mL}\) ), starting with solid solute; (d) a \(0.50 \mathrm{M}\) solution of \(\mathrm{HCl}\) that would just neutralize \(5.5 \mathrm{~g}\) of \(\mathrm{Ba}(\mathrm{OH})_{2}\) starting with \(6.0 \mathrm{M} \mathrm{HCl}\)
What is the freezing point of an aqueous solution that boils at \(105.0^{\circ} \mathrm{C}\) ?
(a) Does a \(0.10 \mathrm{~m}\) aqueous solution of \(\mathrm{NaCl}\) have a higher boiling point, a lower boiling point, or the same boiling point as a \(0.10 \mathrm{~m}\) aqueous solution of \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) ? (b) The experimental boiling point of the \(\mathrm{NaCl}\) solution is lower than that calculated assuming that \(\mathrm{NaCl}\) is completely dissociated in solution. Why is this the case?
Caffeine \(\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\) is a stimulant found in coffee and tea. If a solution of caffeine in the solvent chloroform \(\left(\mathrm{CHCl}_{3}\right)\) has a concentration of \(0.0500 \mathrm{~m}\), calculate (a) the percentage of caffeine by mass, (b) the mole fraction of caffeine in the solution.
You make a solution of a nonvolatile solute with a liquid solvent. Indicate if each of the following statements is true or false. (a) The freezing point of the solution is unchanged by addition of the solvent. (b) The solid that forms as the solution freezes is nearly pure solute. (c) The freezing point of the solution is independent of the concentration of the solute. (d) The boiling point of the solution increases in proportion to the concentration of the solute. (e) At any temperature, the vapor pressure of the solvent over the solution is lower than what it would be for the pure solvent.
What do you think about this solution?
We value your feedback to improve our textbook solutions.