Chapter 13: Problem 18
When ammonium chloride dissolves in water, the solution becomes colder. (a) Is the solution process exothermic or endothermic? (b) Why does the solution form?
Chapter 13: Problem 18
When ammonium chloride dissolves in water, the solution becomes colder. (a) Is the solution process exothermic or endothermic? (b) Why does the solution form?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the molarity of each of the following solutions: (a) \(15.0 \mathrm{~g}\) of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) in \(0.250 \mathrm{~mL}\) solution, (b) \(5.25 \mathrm{~g}\) of \(\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\) in \(175 \mathrm{~mL}\) of solution, (c) \(35.0 \mathrm{~mL}\) of \(9.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\) diluted to \(0.500 \mathrm{~L}\) ?
Two nonpolar organic liquids, hexane \(\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)\) and heptane \(\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)\), are mixed. (a) Do you expect \(\Delta H_{\text {soln }}\) to be a large positive number, a large negative number, or close to zero? Explain. (b) Hexane and heptane are miscible with each other in all proportions. In making a solution of them, is the entropy of the system increased, decreased, or close to zero, compared to the separate pure liquids?
Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing \(0.150 \mathrm{~g}\) of this enzyme in \(210 \mathrm{~mL}\) of solution has an osmotic pressure of \(0.953\) torr at \(25^{\circ} \mathrm{C}\). What is the molar mass of lysozyme?
Describe how you would prepare each of the following aqueous solutions, starting with solid KBr: (a) \(0.75 \mathrm{~L}\) of solution that is \(12.0 \% \mathrm{KBr}\) by mass (the density of the solution is \(1.10 \mathrm{~g} / \mathrm{mL}\) ), (d) a \(0.150 \mathrm{M}\) solution of \(\mathrm{KBr}\) that contains just enough KBr to precipitate \(16.0 \mathrm{~g}\) of \(\mathrm{AgBr}\) from a solution containing \(0.480 \mathrm{~mol}\) of \(\mathrm{AgNO}_{3}\).
Suppose you had a balloon made of some highly flexible semipermeable membrane. The balloon is filled completely with a \(0.2 \mathrm{M}\) solution of some solute and is submerged in a \(0.1 \mathrm{M}\) solution of the same solute: Initially, the volume of solution in the balloon is \(0.25 \mathrm{~L}\). Assuming the volume outside the semipermeable membrane is large, as the illustration shows, what would you expect for the solution volume inside the balloon once the system has come to equilibrium through osmosis? [Section 13.5]
What do you think about this solution?
We value your feedback to improve our textbook solutions.