Chapter 12: Problem 23
Which of the three-dimensional primitive lattices has a unit cell where none of the internal angles is \(90^{\circ}\) ? (a) Orthorhombic, (b) hexagonal, (c) rhombohedral, (d) triclinic, (e) both rhombohedral and triclinic.
Chapter 12: Problem 23
Which of the three-dimensional primitive lattices has a unit cell where none of the internal angles is \(90^{\circ}\) ? (a) Orthorhombic, (b) hexagonal, (c) rhombohedral, (d) triclinic, (e) both rhombohedral and triclinic.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe densities of the elements \(\mathrm{K}, \mathrm{Ca}, \mathrm{Sc}\), and \(\mathrm{Ti}\) are \(0.86,1.5,3.2\), and \(4.5 \mathrm{~g} / \mathrm{cm}^{3}\), respectively. One of these elements crystallizes in a body-centered cubic structure; the other three crystallize in a face-centered cubic structure. Which one crystallizes in the body-centered cubic structure? Justify your answer.
Which would you expect to be the more ductile element, (a) \(\mathrm{Ag}\) or \(\mathrm{Mo}\), (b) \(\mathrm{Zn}\) or \(\mathrm{Si}\) ? In each case explain your reasoning.
In their study of X-ray diffraction, William and Lawrence Bragg determined that the relationship among the wavelength of the radiation \((\lambda)\), the angle at which the radiation is diffracted \((\theta)\), and the distance between planes of atoms in the crystal that cause the diffraction \((d)\) is given by \(n \lambda=2 d \sin \theta\). \(\mathrm{X}\) rays from a copper \(\mathrm{X}\)-ray tube that have a wavelength of \(1.54 \AA\) are diffracted at an angle of \(14.22\) degrees by crystalline silicon. Using the Bragg equation, calculate the distance between the planes of atoms responsible for diffraction in this crystal, assuming \(n=1\) (first-order diffraction).
(a) Draw a picture that represents a crystalline solid at the atomic level. (b) Now draw a picture that represents an amorphous solid at the atomic level.
At room temperature and pressure RbI crystallizes with the NaCl-type structure. (a) Use ionic radii to predict the length of the cubic unit cell edge. (b) Use this value to estimate the density. (c) At high pressure the structure transforms to one with a CsCl-type structure. (c) Use ionic radii to predict the length of the cubic unit cell edge for the highpressure form of RbI. (d) Use this value to estimate the density. How does this density compare with the density you calculated in part (b)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.