Chapter 11: Problem 72
The smectic liquid crystalline phase can be said to be more highly ordered than the nematic phase. In what sense is this true?
Chapter 11: Problem 72
The smectic liquid crystalline phase can be said to be more highly ordered than the nematic phase. In what sense is this true?
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(42.0 \mathrm{~kJ}\) of heat is added to a \(32.0\) - \(\mathrm{g}\) sample of liquid methane under 1 atm of pressure at a temperature of \(-170^{\circ} \mathrm{C}\), what are the final state and temperature of the methane once the system equilibrates? Assume no heat is lost to the surroundings. The normal boiling point of methane is \(-161.5^{\circ} \mathrm{C}\). The specific heats of liquid and gaseous methane are \(3.48\) and \(2.22 \mathrm{~J} / \mathrm{g}-\mathrm{K}\), respectively. [Section 11.4]
Explain the following observations: (a) The surface tension of \(\mathrm{CHBr}_{3}\) is greater than that of \(\mathrm{CHCl}_{3}\). (b) As temperature increases, oil flows faster through a narrow tube. (c) Raindrops that collect on a waxed automobile hood take on a nearly spherical shape. (d) Oil droplets that collect on a waxed automobile hood take on a flat shape.
(a) What is the significance of the triple point in a phase diagram? (b) Could you measure the triple point of water by measuring the temperature in a vessel in which water vapor, liquid water, and ice are in equilibrium under 1 atm of air? Explain.
True or false: (a) For molecules with similar molecular weights, the dispersion forces become stronger as the molecules become more polarizable. (b) For the noble gases the dispersion forces decrease while the boiling points increase as you go down the column in the periodic table. (c) In terms of the total attractive forces for a given substance, dipole- dipole interactions, when present, are always greater than dispersion forces. (d) All other factors being the same, dispersion forces between linear molecules are greater than those between molecules whose shapes are nearly spherical.
Ethylene glycol \(\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\) is the major component of antifreeze. It is a slightly viscous liquid, not very volatile at room temperature, with a boiling point of \(198^{\circ} \mathrm{C}\). Pentane \(\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)\), which has about the same molecular weight, is a nonviscous liquid that is highly volatile at room temperature and whose boiling point is \(36.1^{\circ} \mathrm{C}\). Explain the differences in the physical properties of the two substances.
What do you think about this solution?
We value your feedback to improve our textbook solutions.