Chapter 11: Problem 41
Explain why any substance's heat of fusion is generally lower than its heat of vaporization.
Chapter 11: Problem 41
Explain why any substance's heat of fusion is generally lower than its heat of vaporization.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Two pans of water are on different burners of a stove. One pan of water is boiling vigorously, while the other is boiling gently. What can be said about the temperature of the water in the two pans? (b) A large container of water and a small one are at the same temperature. What can be said about the relative vapor pressures of the water in the two containers?
As a metal such as lead melts, what happens to (a) the average kinetic energy of the atoms, (b) the average distance between the atoms?
Acetone \(\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]\) is widely used as an industrial solvent. (a) Draw the Lewis structure for the acetone molecule and predict the geometry around each carbon atom. (b) Is the acetone molecule polar or nonpolar? (c) What kinds of intermolecular attractive forces exist between acetone molecules? (d) 1-Propanol \(\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\) has a molecular weight that is very similar to that of acetone, yet acetone boils at \(56.5^{\circ} \mathrm{C}\) and 1 -propanol boils at \(97.2^{\circ} \mathrm{C}\). Explain the difference.
(a) Place the following substances in order of increasing volatility: \(\mathrm{CH}_{4}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CHBr}_{3}\), and \(\mathrm{CH}_{2} \mathrm{Br}_{2}\). (b) How do the boiling points vary through this series? (c) Explain your answer to part (b) in terms of intermolecular forces.
(a) Do you expect the viscosity of glycerol, \(\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}\), to be larger or smaller than that of 1-propanol, \(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\) ? (b) Explain. [Section 11.3]
What do you think about this solution?
We value your feedback to improve our textbook solutions.