Chapter 10: Problem 91
(a) List two experimental conditions under which gases deviate from ideal behavior. (b) List two reasons why the gases deviate from ideal behavior.
Chapter 10: Problem 91
(a) List two experimental conditions under which gases deviate from ideal behavior. (b) List two reasons why the gases deviate from ideal behavior.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following statements best explains why nitrogen gas at STP is less dense than Xe gas at STP? (a) Because Xe is a noble gas, there is less tendency for the Xe atoms to repel one another, so they pack more densely in the gaseous state. (b) Xe atoms have a higher mass than \(\mathrm{N}_{2}\) molecules. Because both gases at STP have the same number of molecules per unit volume, the Xe gas must be denser. (c) The Xe atoms are larger than \(\mathrm{N}_{2}\) molecules and thus take up a larger fraction of the space occupied by the gas. (d) Because the Xe atoms are much more massive than the \(\mathrm{N}_{2}\) molecules, they move more slowly and thus exert less upward force on the gas container and make the gas appear denser.
Nickel carbonyl, \(\mathrm{Ni}(\mathrm{CO})_{4}\), is one of the most toxic substances known. The present maximum allowable concentration in laboratory air during an 8-hr workday is \(1 \mathrm{ppb}\) (parts per billion) by volume, which means that there is one mole of \(\mathrm{Ni}(\mathrm{CO})_{4}\) for every \(10^{9}\) moles of gas. Assume \(24^{\circ} \mathrm{C}\) and \(1.00\) atm pressure. What mass of \(\mathrm{Ni}(\mathrm{CO})_{4}\) is allowable in a laboratory room that is \(12 \mathrm{ft} \times 20 \mathrm{ft} \times 9 \mathrm{ft}\) ?
Propane, \(\mathrm{C}_{3} \mathrm{H}_{8}\), liquefies under modest pressure, allowing a large amount to be stored in a container. (a) Calculate the number of moles of propane gas in a 110 -L container at \(3.00\) atm and \(27^{\circ} \mathrm{C}\). (b) Calculate the number of moles of liquid propane that can be stored in the same volume if the density of the liquid is \(0.590 \mathrm{~g} / \mathrm{mL}\) (c) Calculate the ratio of the number of moles of liquid to moles of gas. Discuss this ratio in light of the kinetic-molecular theory of gases.
In the Dumas-bulb technique for determining the molar mass of an unknown liquid, you vaporize the sample of a liquid that boils below \(100^{\circ} \mathrm{C}\) in a boiling-water bath and determine the mass of vapor required to fill the bulb. From the following data, calculate the molar mass of the unknown liquid: mass of unknown vapor, \(1.012 \mathrm{~g}\); volume of bulb, \(354 \mathrm{~cm}^{3}\); pressure, 742 torr; temperature, \(99^{\circ} \mathrm{C}\).
(a) What conditions are represented by the abbreviation STP? (b) What is the molar volume of an ideal gas at STP? (c) Room temperature is often assumed to be \(25^{\circ} \mathrm{C}\). Calculate the molar volume of an ideal gas at \(25^{\circ} \mathrm{C}\) and 1 atm pressure. (d) If you measure pressure in bars instead of atmospheres, calculate the corresponding value of \(R\) in L-bar/mol-K.
What do you think about this solution?
We value your feedback to improve our textbook solutions.