Chapter 10: Problem 5
Suppose you have a fixed amount of an ideal gas at a constant volume. If the pressure of the gas is doubled while the volume is held constant, what happens to its temperature? [Section 10.4]
Chapter 10: Problem 5
Suppose you have a fixed amount of an ideal gas at a constant volume. If the pressure of the gas is doubled while the volume is held constant, what happens to its temperature? [Section 10.4]
All the tools & learning materials you need for study success - in one app.
Get started for freeHydrogen gas is produced when zinc reacts with sulfuric acid: $$ \mathrm{Zn}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{H}_{2}(g) $$ If \(159 \mathrm{~mL}\) of wet \(\mathrm{H}_{2}\) is collected over water at \(24^{\circ} \mathrm{C}\) and a barometric pressure of 738 torr, how many grams of \(\mathrm{Zn}\) have been consumed? (The vapor pressure of water is tabulated in Appendix B.)
Nickel carbonyl, \(\mathrm{Ni}(\mathrm{CO})_{4}\), is one of the most toxic substances known. The present maximum allowable concentration in laboratory air during an 8-hr workday is \(1 \mathrm{ppb}\) (parts per billion) by volume, which means that there is one mole of \(\mathrm{Ni}(\mathrm{CO})_{4}\) for every \(10^{9}\) moles of gas. Assume \(24^{\circ} \mathrm{C}\) and \(1.00\) atm pressure. What mass of \(\mathrm{Ni}(\mathrm{CO})_{4}\) is allowable in a laboratory room that is \(12 \mathrm{ft} \times 20 \mathrm{ft} \times 9 \mathrm{ft}\) ?
Rank the following gases from least dense to most dense at \(1.00 \mathrm{~atm}\) and \(298 \mathrm{~K}: \mathrm{SO}_{2}, \mathrm{HBr}, \mathrm{CO}_{2}\). Explain.
In the Dumas-bulb technique for determining the molar mass of an unknown liquid, you vaporize the sample of a liquid that boils below \(100^{\circ} \mathrm{C}\) in a boiling-water bath and determine the mass of vapor required to fill the bulb. From the following data, calculate the molar mass of the unknown liquid: mass of unknown vapor, \(1.012 \mathrm{~g}\); volume of bulb, \(354 \mathrm{~cm}^{3}\); pressure, 742 torr; temperature, \(99^{\circ} \mathrm{C}\).
Propane, \(\mathrm{C}_{3} \mathrm{H}_{8}\), liquefies under modest pressure, allowing a large amount to be stored in a container. (a) Calculate the number of moles of propane gas in a 110 -L container at \(3.00\) atm and \(27^{\circ} \mathrm{C}\). (b) Calculate the number of moles of liquid propane that can be stored in the same volume if the density of the liquid is \(0.590 \mathrm{~g} / \mathrm{mL}\) (c) Calculate the ratio of the number of moles of liquid to moles of gas. Discuss this ratio in light of the kinetic-molecular theory of gases.
What do you think about this solution?
We value your feedback to improve our textbook solutions.