Chapter 9: Problem 52
Why are there no \(s p^{4}\) or \(s p^{5}\) hybrid orbitals?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 9: Problem 52
Why are there no \(s p^{4}\) or \(s p^{5}\) hybrid orbitals?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(\mathrm{O}-\mathrm{H}\) bond lengths in the water molecule \(\left(\mathrm{H}_{2} \mathrm{O}\right)\) are \(0.96 \AA\), and the \(\mathrm{H}-\mathrm{O}-\mathrm{H}\) angle is \(104.5^{\circ} .\) The dipole moment of the water molecule is \(1.85 \mathrm{D} .\) (a) In what directions do the bond dipoles of the \(\mathrm{O}-\mathrm{H}\) bonds point? In what direction does the dipole moment vector of the water molecule point? (b) Calculate the magnitude of the bond dipole of the \(\mathrm{O}-\mathrm{H}\) bonds. (Note: You will need to use vector addition to do this.) (c) Compare your answer from part (b) to the dipole moments of the hydrogen halides (Table 8.3). Is your answer in accord with the relative electronegativity of oxygen?
How many nonbonding electron pairs are there in each of the following molecules: (a) \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S},\) (b) \(\mathrm{HCN},\) (c) \(\mathrm{H}_{2} \mathrm{C}_{2}\), (d) \(\mathrm{CH}_{3} \mathrm{~F} ?\)
(a) What is the probability of finding an electron on the internuclear axis if the electron occupies a \(\pi\) molecular orbital? (b) For a homonuclear diatomic molecule, what similarities and differences are there between the \(\pi_{2 p}\) MO made from the \(2 p_{x}\) atomic orbitals and the \(\pi_{2 p}\) MO made from the \(2 p_{y}\) atomic orbitals? (c) How do the \(\pi_{2 p}^{*}\) MOs formed from the \(2 p_{x}\) and \(2 p_{y}\) atomic orbitals differ from the \(\pi_{2 p}\) MOs in terms of energies and electron distributions?
Determine the electron configurations for \(\mathrm{CN}^{+}, \mathrm{CN},\) and \(\mathrm{CN}^{-}\). (a) Which species has the strongest \(\mathrm{C}-\mathrm{N}\) bond? (b) Which species, if any, has unpaired electrons?
A compound composed of \(2.1 \% \mathrm{H}, 29.8 \% \mathrm{~N},\) and \(68.1 \% \mathrm{O}\) has a molar mass of approximately \(50 \mathrm{~g} / \mathrm{mol}\). (a) What is the molecular formula of the compound? (b) What is its Lewis structure if \(\mathrm{H}\) is bonded to \(\mathrm{O} ?\) (c) What is the geometry of the molecule? (d) What is the hybridization of the orbitals around the \(\mathrm{N}\) atom? (e) How many \(\sigma\) and how many \(\pi\) bonds are there in the molecule?
What do you think about this solution?
We value your feedback to improve our textbook solutions.