Chapter 7: Problem 71
(a) Why is calcium generally more reactive than magnesium? (b) Why is calcium generally less reactive than potassium?
Chapter 7: Problem 71
(a) Why is calcium generally more reactive than magnesium? (b) Why is calcium generally less reactive than potassium?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe first ionization energy of the oxygen molecule is the energy required for the following process: $$ \mathrm{O}_{2}(g) \longrightarrow \mathrm{O}_{2}^{+}(g)+\mathrm{e}^{-} $$ The energy needed for this process is \(1175 \mathrm{~kJ} / \mathrm{mol}\), very similar to the first ionization energy of Xe. Would you expect \(\mathrm{O}_{2}\) to react with \(\mathrm{F}_{2}\) ? If so, suggest a product or products of this reaction.
In the chemical process called electron transfer, an electron is transferred from one atom or molecule to another. (We will talk about electron transfer extensively in Chapter 20.) A simple electron transfer reaction is $$ \mathrm{A}(g)+\mathrm{A}(g) \longrightarrow \mathrm{A}^{+}(g)+\mathrm{A}^{-}(g) $$ In terms of the ionization energy and electron affinity of atom A, what is the energy change for this reaction? For a representative nonmetal such as chlorine, is this process exothermic? For a representative metal such as sodium, is this process exothermic? [Sections 7.4 and 7.5\(]\)
Mercury in the environment can exist in oxidation states 0,+1 , and \(+2 .\) One major question in environmental chemistry research is how to best measure the oxidation state of mercury in natural systems; this is made more complicated by the fact that mercury can be reduced or oxidized on surfaces differently than it would be if it were free in solution. XPS, X-ray photoelectron spectroscopy, is a technique related to PES (see Exercise 7.107 ), but instead of using ultraviolet light to eject valence electrons, X-rays are used to eject core electrons. The energies of the core electrons are different for different oxidation states of the element. In one set of experiments, researchers examined mercury contamination of minerals in water. They measured the XPS signals that corresponded to electrons ejected from mercury's 4 forbitals at \(105 \mathrm{eV},\) from an X-ray source that provided \(1253.6 \mathrm{eV}\) of energy. The oxygen on the mineral surface gave emitted electron energies at \(531 \mathrm{eV}\), corresponding to the 1 s orbital of oxygen. Overall the researchers concluded that oxidation states were +2 for \(\mathrm{Hg}\) and -2 for \(\mathrm{O} .\) (a) Calculate the wavelength of the X-rays used in this experiment. (b) Compare the energies of the \(4 f\) electrons in mercury and the 1 s electrons in oxygen from these data to the first ionization energies of mercury and oxygen from the data in this chapter. (c) Write out the ground- state electron configurations for \(\mathrm{Hg}^{2+}\) and \(\mathrm{O}^{2-}\); which electrons are the valence electrons in each case? (d) Use Slater's rules to estimate \(Z_{\text {eff }}\) for the \(4 f\) and valence electrons of \(\mathrm{Hg}^{2+}\) and \(\mathrm{O}^{2-}\); assume for this purpose that all the inner electrons with \((n-3)\) or less screen a full + \(1 .\)
Compare the elements bromine and chlorine with respect to the following properties: (a) electron configuration, (b) most common ionic charge, (c) first ionization energy, (d) reactivity toward water, (e) electron affinity, (f) atomic radius. Account for the differences between the two elements.
Identify each statement as true or false. If it is false, rewrite it so that it is true: (a) Ionization energies are always negative quantitites. (b) Oxygen has a larger first ionization energy than fluorine. (c) The second ionization energy of an atom is always greater than its first ionization energy.
What do you think about this solution?
We value your feedback to improve our textbook solutions.