Chapter 4: Problem 46
Can oxidation occur without oxygen? Can oxidation occur without reduction?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 4: Problem 46
Can oxidation occur without oxygen? Can oxidation occur without reduction?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe metal cadmium tends to form Cd \(^{2+}\) ions. The following observations are made: (i) When a strip of zinc metal is placed in \(\mathrm{CdCl}_{2}(a q),\) cadmium metal is deposited on the strip. (ii) When a strip of cadmium metal is placed in \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(a q),\) nickel metal is deposited on the strip. (a) Write net ionic equations to explain each of the preceding observations. (b) What can you conclude about the position of cadmium in the activity series? (c) What experiments would you need to perform to locate more precisely the position of cadmium in the activity series?
A \(3.455-\mathrm{g}\) sample of a mixture was analyzed for barium ion by adding a small excess of sulfuric acid to an aqueous solution of the sample. The resultant reaction produced a precipitate of barium sulfate, which was collected by filtration, washed, dried, and weighed. If \(0.2815 \mathrm{~g}\) of barium sulfate was obtained, what was the mass percentage of barium in the sample?
(a) Use the following reactions to prepare an activity series for the halogens: $$ \begin{aligned} \mathrm{Br}_{2}(a q)+2 \mathrm{NaI}(a q) & \longrightarrow 2 \mathrm{NaBr}(a q)+\mathrm{I}_{2}(a q) \\ \mathrm{Cl}_{2}(a q)+2 \mathrm{NaBr}(a q) & \longrightarrow 2 \mathrm{NaCl}(a q)+\mathrm{Br}_{2}(a q) \end{aligned} $$ (b) Relate the positions of the halogens in the periodic table with their locations in this activity series. (c) Predict whether a reaction occurs when the following reagents are mixed: \(\mathrm{Cl}_{2}(a q)\) and \(\mathrm{KI}(a q) ; \operatorname{Br}_{2}(a q)\) and \(\operatorname{LiCl}(a q)\)
Indicate the concentration of each ion present in the solution formed by mixing (a) \(42.0 \mathrm{~mL}\) of \(0.170 \mathrm{M} \mathrm{NaOH}\) and \(37.6 \mathrm{~mL}\) of \(0.400 \mathrm{M} \mathrm{NaOH}\), (b) \(44.0 \mathrm{~mL}\) of \(0.100 \mathrm{M}\) and \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and \(25.0 \mathrm{~mL}\) of \(0.150 \mathrm{M} \mathrm{KCl},(\mathrm {c}) 3.60 \mathrm{~g} \mathrm{KCl}\) in \(75.0 \mathrm{~mL}\) of \(0.250 \mathrm{M}\) \(\mathrm{CaCl}_{2}\) solution. Assume that the volumes are additive.
We have seen that ions in aqueous solution are stabilized by the attractions between the ions and the water molecules. Why then do some pairs of ions in solution form precipitates? \([\) Section 4.2\(]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.