Chapter 23: Problem 17
Explain the difference between a diamagnetic substance and a paramagnetic substance.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 23: Problem 17
Explain the difference between a diamagnetic substance and a paramagnetic substance.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen Alfred Werner was developing the field of coordination chemistry, it was argued by some that the optical activity he observed in the chiral complexes he had prepared was because of the presence of carbon atoms in the molecule. To disprove this argument, Werner synthesized a chiral complex of cobalt that had no carbon atoms in it, and he was able to resolve it into its enantiomers. Design a cobalt(III) complex that would be chiral if it could be synthesized and that contains no carbon atoms. (It may not be possible to synthesize the complex you design, but we won't worry about that for now.)
Pyridine \(\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\), abbreviated py, is the molecule (a) Why is pyridine referred to as a monodentate ligand? (b) For the equilibrium reaction $$ \left[\mathrm{Ru}(\mathrm{py})_{4}(\mathrm{bipy})\right]^{2+}+2 \mathrm{py} \rightleftharpoons\left[\mathrm{Ru}(\mathrm{py})_{6}\right]^{2+}+\text { bipy } $$ what would you predict for the magnitude of the equilibrium constant? Explain your answer.
A Cu electrode is immersed in a solution that is \(1.00 \mathrm{M}\) in \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\) and \(1.00 \mathrm{M}\) in \(\mathrm{NH}_{3}\). When the cathode is a standard hydrogen electrode, the emf of the cell is found to be \(+0.08 \mathrm{~V}\). What is the formation constant for \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} ?\)
Generally speaking, for a given metal and ligand, the stability of a coordination compound is greater for the metal in the +3 rather than in the +2 oxidation state (for metals that form stable +3 ions in the first place). Suggest an explanation, keeping in mind the Lewis acid-base nature of the metal-ligand bond.
Explain why the \(d_{x y}, d_{x z}\), and \(d_{y z}\) orbitals lie lower in energy than the \(d_{z}^{2}\) and \(d_{x^{2}-y^{2}}\) orbitals in the presence of an octahedral arrangement of ligands about the central metal ion.
What do you think about this solution?
We value your feedback to improve our textbook solutions.