Chapter 21: Problem 69
Radon-222 decays to a stable nucleus by a series of three alpha emissions and two beta emissions. What is the stable nucleus that is formed?
Chapter 21: Problem 69
Radon-222 decays to a stable nucleus by a series of three alpha emissions and two beta emissions. What is the stable nucleus that is formed?
All the tools & learning materials you need for study success - in one app.
Get started for freeComplete and balance the nuclear equations for the following fission or fusion reactions: (a) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+\) (b) \({ }_{92}^{239} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{51}^{133} \mathrm{Sb}+{ }_{41}^{98} \mathrm{Nb}+{ }_{-0}^{1} \mathrm{n}\)
Write balanced equations for each of the following nuclear reactions: (a) \({ }_{92}^{238} \mathrm{U}(\mathrm{n}, \gamma){ }^{239} \mathrm{U}\) (b) \({ }_{7}^{14} \mathrm{~N}(\mathrm{p}, \alpha)^{11}{ }_{6} \mathrm{C}\) (c) \({ }_{8}^{18} \mathrm{O}(\mathrm{n}, \beta){ }^{19}{ }_{9} \mathrm{~F}\).
One of the nuclides in each of the following pairs is radioactive. Predict which is radioactive and which is stable: (a) \({ }_{19}^{39} \mathrm{~K}\) and \({ }_{19}^{40} \mathrm{~K}\), (b) \({ }^{209} \mathrm{Bi}\) and \({ }^{208} \mathrm{Bi}\), (c) nickel-58 and nickel-65. Explain.
Based on the following atomic mass values \(-1 \mathrm{H}\), 1.00782 amu; \({ }^{2} \mathrm{H}, 2.01410 \mathrm{amu} ;{ }^{3} \mathrm{H}, 3.01605 \mathrm{amu} ;{ }^{3} \mathrm{He}\) 3.01603 amu; \({ }^{4}\) He, 4.00260 amu- and the mass of the neutron given in the text, calculate the energy released per mole in each of the following nuclear reactions, all of which are possibilities for a controlled fusion process: (a) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\) (b) \({ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}\) (c) \({ }_{1}^{2} \mathrm{H}+{ }_{2}^{3} \mathrm{He} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{H}\)
Indicate the number of protons and neutrons in the following nuclei: (a) \({ }_{52}^{124} \mathrm{Te},(\mathbf{b}){ }^{37} \mathrm{Cl},(\mathrm{c})\) thorium- \(232 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.