Chapter 18: Problem 84
The concentration of \(\mathrm{H}_{2} \mathrm{O}\) in the stratosphere is about \(5 \mathrm{ppm}\). It undergoes photodissociation according to: $$ \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}(g)+\mathrm{OH}(g) $$ (a) Write out the Lewis-dot structures for both products and reactant. (b) Using Table \(8.4,\) calculate the wavelength required to cause this dissociation. (c) The hydroxyl radicals, OH, can react with ozone, giving the following reactions: $$ \begin{array}{l} \mathrm{OH}(g)+\mathrm{O}_{3}(g) \longrightarrow \mathrm{HO}_{2}(g)+\mathrm{O}_{2}(g) \\ \mathrm{HO}_{2}(g)+\mathrm{O}(g) \longrightarrow \mathrm{OH}(g)+\mathrm{O}_{2}(g) \end{array} $$ What overall reaction results from these two elementary reactions? What is the catalyst in the overall reaction? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.