Chapter 18: Problem 70
The hydroxyl radical, \(\mathrm{OH}\), is formed at low altitudes via the reaction of excited oxygen atoms with water: $$ \mathrm{O}^{*}(g)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{OH}(g) $$ (a) Write the Lewis structure for the hydroxyl radical. (Hint: It has one unpaired electron.) Once produced, the hydroxyl radical is very reactive. Explain why each of the following series of reactions affects the pollution in the troposphere: (b) \(\mathrm{OH}+\mathrm{NO}_{2} \longrightarrow \mathrm{HNO}_{3}\) (c) \(\mathrm{OH}+\mathrm{CO}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{OOH}\) \(\mathrm{OOH}+\mathrm{NO} \longrightarrow \mathrm{OH}+\mathrm{NO}_{2}\) (d) \(\mathrm{OH}+\mathrm{CH}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\) \(\mathrm{CH}_{3}+\mathrm{O}_{2} \longrightarrow \mathrm{OOCH}_{3}\) \(\mathrm{OOCH}_{3}+\mathrm{NO} \longrightarrow \mathrm{OCH}_{3}+\mathrm{NO}_{2}\) (e) The concentration of hydroxyl radicals in the troposphere is approximately \(2 \times 10^{6}\) radicals per \(\mathrm{cm}^{3}\). This estimate is based on a method called long path absorption spectroscopy (LPAS), similar in principle to the Beer's law measurement discussed in the Closer Look essay on p. 564 , except that the path length in the LPAS measurement is \(20 \mathrm{~km}\). Why must the path length be so large?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.