Chapter 18: Problem 41
(a) What is groundwater? (b) What is an aquifer?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 18: Problem 41
(a) What is groundwater? (b) What is an aquifer?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeBioremediation is the process by which bacteria repair their environment in response, for example, to an oil spill. The efficiency of bacteria for "eating" hydrocarbons depends on the amount of oxygen in the system, pH, temperature, and many other factors. In a certain oil spill, hydrocarbons from the oil disappeared with a first-order rate constant of \(2 \times 10^{-6} \mathrm{~s}^{-1}\). How many days did it take for the hydrocarbons to decrease to \(10 \%\) of their initial value?
An impurity in water has an extinction coefficient of \(3.45 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) at \(280 \mathrm{nm}\), its absorption maximum Closer Look, p. 564). Below 50 ppb, the impurity is not a problem for human health. Given that most spectrometers cannot detect absorbances less than 0.0001 with good reliability, is measuring the absorbance of water at \(280 \mathrm{nm}\) a good way to detect concentrations of the impurity above the 50 -ppb threshold?
The enthalpy of fusion of water is \(6.01 \mathrm{~kJ} / \mathrm{mol}\). Sunlight striking Earth's surface supplies \(168 \mathrm{~W}\) per square meter \((1 \mathrm{~W}=\) 1 watt \(=1 \mathrm{~J} / \mathrm{s}\) ). (a) Assuming that melting of ice is only due to energy input from the Sun, calculate how many grams of ice could be melted from a 1.00 square meter patch of ice over a 12 hour day. (b) The specific heat capacity of ice is \(2.032 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\). If the initial temperature of a 1.00 square meter patch of ice is \(-5.0^{\circ} \mathrm{C},\) what is its final temperature after being in sunlight for 12 hours, assuming no phase changes and assuming that sunlight penetrates uniformly to a depth of \(1.00 \mathrm{~cm}\) ?
Do the reactions involved in ozone depletion involve changes in oxidation state of the O atoms? Explain.
The Henry's law constant for \(\mathrm{CO}_{2}\) in water at \(25^{\circ} \mathrm{C}\) $$ \text { is } 3.1 \times 10^{-2} M \mathrm{~atm}^{-1} $$ (a) What is the solubility of \(\mathrm{CO}_{2}\) in water at this temperature if the solution is in contact with air at normal atmospheric pressure? (b) Assume that all of this \(\mathrm{CO}_{2}\) is in the form of \(\mathrm{H}_{2} \mathrm{CO}_{3}\) produced by the reaction between \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}:\) $$ \mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q) $$ What is the \(\mathrm{pH}\) of this solution?
What do you think about this solution?
We value your feedback to improve our textbook solutions.