Chapter 18: Problem 28
Why is rainwater naturally acidic, even in the absence of polluting gases such as \(\mathrm{SO}_{2}\) ?
Chapter 18: Problem 28
Why is rainwater naturally acidic, even in the absence of polluting gases such as \(\mathrm{SO}_{2}\) ?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe organic anion is found in most detergents. Assume that the anion undergoes aerobic decomposition in the following manner: $$ \begin{array}{r} 2 \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{SO}_{3}^{-}(a q)+51 \mathrm{O}_{2}(a q) \longrightarrow \\ 36 \mathrm{CO}_{2}(a q)+28 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{H}^{+}(a q)+2 \mathrm{SO}_{4}^{2-}(a q) \end{array} $$ What is the total mass of \(\mathrm{O}_{2}\) required to biodegrade \(10.0 \mathrm{~g}\) of this substance?
An impurity in water has an extinction coefficient of \(3.45 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) at \(280 \mathrm{nm}\), its absorption maximum Closer Look, p. 564). Below 50 ppb, the impurity is not a problem for human health. Given that most spectrometers cannot detect absorbances less than 0.0001 with good reliability, is measuring the absorbance of water at \(280 \mathrm{nm}\) a good way to detect concentrations of the impurity above the 50 -ppb threshold?
One of the principles of green chemistry is that it is better to use as few steps as possible in making new chemicals. How does this principle relate to energy efficiency?
The average daily mass of \(\mathrm{O}_{2}\) taken up by sewage discharged in the United States is \(59 \mathrm{~g}\) per person. How many liters of water at \(9 \mathrm{ppm} \mathrm{O}_{2}\) are totally depleted of oxygen in 1 day by a population of 1,200,000 people?
Explain how the reactions of ozone in the stratosphere are responsible for the relatively warm temperatures of the stratosphere.
What do you think about this solution?
We value your feedback to improve our textbook solutions.