Chapter 17: Problem 97
The solubility of \(\mathrm{CaCO}_{3}\) is pH dependent. (a) Calculate the molar solubility of \(\mathrm{CaCO}_{3}\left(K_{s p}=4.5 \times 10^{-9}\right)\) neglecting the acid-base character of the carbonate ion. (b) Use the \(K_{b}\) expression for the \(\mathrm{CO}_{3}^{2-}\) ion to determine the equilibrium constant for the reaction \(\mathrm{CaCO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+\mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q)\) (c) If we assume that the only sources of \(\mathrm{Ca}^{2+}, \mathrm{HCO}_{3}^{-},\) and \(\mathrm{OH}^{-}\) ions are from the dissolution of \(\mathrm{CaCO}_{3},\) what is the molar solubility of \(\mathrm{CaCO}_{3}\) using the preceding expression? What is the \(\mathrm{pH} ?\) (d) If the \(\mathrm{pH}\) is buffered at 8.2 (as is historically typical for the ocean), what is the molar solubility of \(\mathrm{CaCO}_{3} ?\) (e) If the \(\mathrm{pH}\) is buffered at \(7.5,\) what is the molar solubility of \(\mathrm{CaCO}_{3} ?\) How much does this drop in \(\mathrm{pH}\) increase solubility? solution remains \(0.50 \mathrm{~L},\) calculate the \(\mathrm{pH}\) of the resulting solution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.