Chapter 17: Problem 114
The osmotic pressure of a saturated solution of strontium sulfate at \(25^{\circ} \mathrm{C}\) is 21 torr. What is the solubility product of this salt at \(25^{\circ} \mathrm{C} ?\)
Chapter 17: Problem 114
The osmotic pressure of a saturated solution of strontium sulfate at \(25^{\circ} \mathrm{C}\) is 21 torr. What is the solubility product of this salt at \(25^{\circ} \mathrm{C} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the ratio of \(\left[\mathrm{Ca}^{2+}\right]\) to \(\left[\mathrm{Fe}^{2+}\right]\) in a lake in which the water is in equilibrium with deposits of both \(\mathrm{CaCO}_{3}\) and \(\mathrm{FeCO}_{3}\). Assume that the water is slightly basic and that the hydrolysis of the carbonate ion can therefore be ignored.
Aspirin has the structural formula At body temperature \(\left(37^{\circ} \mathrm{C}\right), K_{a}\) for aspirin equals \(3 \times 10^{-5}\). If two aspirin tablets, each having a mass of \(325 \mathrm{mg},\) are dissolved in a full stomach whose volume is \(1 \mathrm{~L}\) and whose \(\mathrm{pH}\) is \(2,\) what percent of the aspirin is in the form of neutral molecules?
Consider a beaker containing a saturated solution of \(\mathrm{Pbl}_{2}\) in equilibrium with undissolved \(\mathrm{Pbl}_{2}(s) .\) (a) If solid KI is added to this solution, will the amount of solid \(\mathrm{PbI}_{2}\) at the bottom of the beaker increase, decrease, or remain the same? (b) Will the concentration of \(\mathrm{Pb}^{2+}\) ions in solution increase or decrease? (c) Will the concentration of \(\mathrm{I}^{-}\) ions in solution increase or decrease?
Calculate the pH at the equivalence point for titrating \(0.200 \mathrm{M}\) solutions of each of the following bases with \(0.200 \mathrm{M} \mathrm{HBr}\) : (a) sodium hydroxide \((\mathrm{NaOH}),(\mathbf{b})\) hydroxylamine \(\left(\mathrm{NH}_{2} \mathrm{OH}\right),(\mathbf{c})\) aniline \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)\).
The solubility of \(\mathrm{CaCO}_{3}\) is pH dependent. (a) Calculate the molar solubility of \(\mathrm{CaCO}_{3}\left(K_{s p}=4.5 \times 10^{-9}\right)\) neglecting the acid-base character of the carbonate ion. (b) Use the \(K_{b}\) expression for the \(\mathrm{CO}_{3}^{2-}\) ion to determine the equilibrium constant for the reaction \(\mathrm{CaCO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+\mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q)\) (c) If we assume that the only sources of \(\mathrm{Ca}^{2+}, \mathrm{HCO}_{3}^{-},\) and \(\mathrm{OH}^{-}\) ions are from the dissolution of \(\mathrm{CaCO}_{3},\) what is the molar solubility of \(\mathrm{CaCO}_{3}\) using the preceding expression? What is the \(\mathrm{pH} ?\) (d) If the \(\mathrm{pH}\) is buffered at 8.2 (as is historically typical for the ocean), what is the molar solubility of \(\mathrm{CaCO}_{3} ?\) (e) If the \(\mathrm{pH}\) is buffered at \(7.5,\) what is the molar solubility of \(\mathrm{CaCO}_{3} ?\) How much does this drop in \(\mathrm{pH}\) increase solubility? solution remains \(0.50 \mathrm{~L},\) calculate the \(\mathrm{pH}\) of the resulting solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.