Chapter 15: Problem 94
Silver chloride, \(\mathrm{AgCl}(s)\), is an "insoluble" strong electrolyte. (a) Write the equation for the dissolution of \(\mathrm{AgCl}(s)\) in \(\mathrm{H}_{2} \mathrm{O}(l)\) (b) Write the expression for \(K_{c}\) for the reaction in part (a). (c) Based on the thermochemical data in Appendix \(\mathrm{C}\) and Le Châtelier's principle, predict whether the solubility of \(\mathrm{AgCl}\) in \(\mathrm{H}_{2} \mathrm{O}\) increases or decreases with increasing temperature. (d) The equilibrium constant for the dissolution of \(\mathrm{AgCl}\) in water is \(1.6 \times 10^{-10}\) at \(25^{\circ} \mathrm{C}\). In addition, \(\mathrm{Ag}^{+}(a q)\) can react with \(\mathrm{Cl}^{-}(a q)\) according to the reaction $$\mathrm{Ag}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{AgCl}_{2}^{-}(a q)$$ where \(K_{c}=1.8 \times 10^{5}\) at \(25^{\circ} \mathrm{C}\). Although \(\mathrm{AgCl}\) is "not soluble" in water, the complex \(\mathrm{AgCl}_{2}^{-}\) is soluble. At \(25^{\circ} \mathrm{C},\) is the solubility of AgCl in a \(0.100 M\) NaCl solution greater than the solubility of AgCl in pure water, due to the formation of soluble \(\mathrm{AgCl}_{2}^{-}\) ions? Or is the \(\mathrm{AgCl}\) solubility in \(0.100 \mathrm{M} \mathrm{NaCl}\) less than in pure water because of a Le Châtelier-type argument? Justify your answer with calculations.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.